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Introduction 

Scope and purpose 
This report has been designed to discuss the usefulness of environmental risk mapping for public health. The 
report demonstrates the application of non-linear discriminant analysis (NLDA) to examine how the following 
question could be answered by environmental risk mapping: ‘How might we study and monitor Aedes albopictus, in 
order to be better prepared for outbreaks of diseases vectored by this species in the future?’ 

What is this document for? 

This is a technical report published with the intent of informing readers about the ways in which the data contained 
in the ECDC European Environment and Epidemiology Network (E3) can be used for risk mapping of 
Ae. albopictus – as well as infectious disease vectors more generally – in continental Europe. The specific example 
of risk mapping given in this report is non-linear discriminant analysis. 

Who is this document for? 

This document has been prepared for public health institutions and scientists experts dedicated to the control of 
vector-borne diseases. This report should be of particular relevance to those working with vector-borne diseases in 
EU Member States and neighbouring countries, but it may also be relevant to a broader international audience. It 
may also be of relevance to those tasked with establishing surveillance protocols for invasive mosquito species. 

Why was it commissioned? 

This project was commissioned in 2010 in order to provide insight into two streams of ECDC work. One was to 
support the development of European Environment and Epidemiology (E3) Network, and the other is ECDC work 
focused on emerging and vector-borne diseases. 

The project was financed solely by the European Centre for Disease Prevention and Control (ECDC), and the 
project was undertaken by the University of Oxford, United Kingdom, in collaboration with ECDC technical staff. 
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1 Background 

Risk mapping with geospatial data is a rapidly growing area in public health. With the aim of facilitating information 
exchange on the risk mapping of infectious diseases in Europe, ECDC launched the European Environment and 
Epidemiology (E3) network in 2013. This network enables users to obtain the latest project results from ECDC and 
its partner organisations and provides access to hundreds of datasets relevant to the risk mapping of infectious 
diseases. 

To evaluate and demonstrate the practice of risk mapping, this report describes the process involved in modelling 
the potential distribution of the Asian tiger mosquito (Ae. albopictus) in Europe. The main section describes the 
selected data sources, the formatting of environmental data, and the production of a series of risk maps. The 
discussion surveys the technical decisions made when producing risk maps, and the appendix provides a tutorial on 
risk mapping based upon non-linear discriminant analysis (NLDA). 

Ae. albopictus, arrived in Europe in Albania in 1979, and then Italy in the early 1990s via trade in used tires1. 
Ae. albopictus is, today, principally present in the northwest Mediterranean basin (Figure 1)2. The expansion of the 

vector in Europe has been driven by global trade and travel between climatically similar regions3, and it has been 
speculated that future European expansion of Ae. albopictus could be further facilitated by climate change, as 
altered warming and precipitation patterns might increase the number of suitable niches for the vector4. 
Irrespective of future climatic changes, a series of risk maps published by ECDC in 2012 suggest that 
Ae. albopictus has yet to fill its realisable niche in continental Europe5. 

Ae. albopictus is a less effective epidemic dengue vector than Ae. aegypti 6, but in recent years it has nonetheless 
been responsible for transmitting both dengue and chikingunya fever in continental Europe, including over 200 
laboratory-confirmed cases of chikungunya in Italy in 20077 and local dengue transmission in Croatia and France. 

Due to its potential public health significance, there are currently numerous activities in Europe to consider the 
impact that changing climatic and environmental variables could have on the distribution of Ae. albopictus in 
Europe. Similarly, organisations responsible for public health and vector control will need to be able to interpret the 
results from such initiatives so as to inform vector surveillance activities8. In this report, the processes for 
producing risk maps based upon the data stored in the ECDC European Environment and Epidemiology network 
(E3) and using NLDA methodologies will be discussed, as will the implications of the resultant risk maps for public 
health initiatives, for example in the areas of monitoring and early warning. 

Figure 1. Recorded presence and absence of Aedes albopictus in continental Europe  

 
Note: Indoor presence corresponds to presence recorded in greenhouses.  
Data courtesy of VBORNET. Copyright © European Centre for Disease Prevention and Control, 2012 
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2 Selecting data for environmental risk 
mapping for non-linear discriminant analysis 

2.1 Mosquito data  

A number of recent initiatives have either gathered together existing information on European mosquitoes (e.g. the 
NBN gateway in the UKi; Tigermaps, funded by ECDC; or MosquitoMap in the USAii) or have set out to gather 
information anew (e.g. MODIRISK in Belgiumiii and a parallel initiative in the Netherlands).  

ECDC has established the VBORNET initiative aimed at obtaining EU-wide vector distribution data, but in some 
instances the distribution data on disease vectors can be patchy or simply unavailable. 

2.2 Environmental data  

The studies described in this report received inputs from a wide range of environmental data from many different 
sources. These inputs needed to be standardised in terms of coverage and resolution, and thus required significant 
effort to acquire, process and archive. The availability of data archives such as the E3 Network therefore greatly 
facilitates the work flow and substantially enhances productivity. The following represents not only those datasets 
that have been used in these studies, but also identifies some of those that would be useful for work of this type.  

Meteorological data 

Interpolated meteorological data (temperature, rainfall, relative humidity/saturation deficit, wind, sunshine hours) 
at the highest available resolution (1/6th degree or better). These are available from a number of sources – 
notably Worldclim (www.worldclim.org) and the Climate Research Unit (http://www.cru.uea.ac.uk) – and 
processed versions suitable for modelling are available from the ECDC E3 network archive. 

Low-resolution satellite data 

Examples of low-resolution satellite data include MODIS, with a resolution down to 250m; SPOT multi-temporal, 

with a resolution down to 1km; AVHRR, with a resolution down to 1km; and MERIS data, with a resolution down to 
300m. The MODIS and AVHRR data sets are available from the EDEN and E3 archives as Temporal Fourier 
Analysed outputs (see Annex 2 for processing details). 

An additional dataset (CMORPH
iv
) has been used as an index of rainfall, using precipitation estimates that have 

been exclusively derived from low orbiter satellite microwave observations, and whose features are transported via 
spatial propagation information that is obtained entirely from geostationary satellite IR data. Note that this 
technique is not a precipitation estimation algorithm but a means by which estimates from existing microwave 
rainfall algorithms can be combined. Therefore, this method is extremely flexible such that any precipitation 
estimates from any microwave satellite source can be incorporated. 

High-resolution satellite data 

High-resolution satellite data (LANDSAT or SPOT, resolutions down to 10m). RGB versions of the LANDSAT imagery 
are held in the in the E3 archives. 

Elevation data 

Digital Elevation Models (DEM), notably the 90m-resolution datasets derived from the Shuttle Radar Topographic 
Mission are available within the E3 archives. 

Land-cover data 

Land-cover maps for Europe derived from satellites are available in several flavours, an example of which is the 
CORINE 100m-resolution land use map held at the European Environment Agency (EEA) for 1995, 2000, and 2005. 
These data, however, only cover the EU Member States and thus need to be supplemented with other datasets. 

 

                                                                    
i http://data.nbn.org.uk 
ii http://www.mosquitomap.org 
iii http://www.modirisk.be/modirisk/GeneralSite/default.aspx?WPID=183&L=E&miid=174 

iv Joyce RJ, Janowiak JE, Arkin PA, Xie P. CMORPH: A method that produces global precipitation estimates from passive 

microwave and infrared data at high spatial and temporal resolution. J. Hydromet. 2004;5:487-503 

http://www.worldclim.org/
http://www.cru.uea.ac.uk/
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Suitable candidates are GLOBCOVER from ESA, for which a new 2009 version is in preparation, or the Global Land 

Cover2000 from the UN system. These constituent elements are available in the E3 archives. 

Soil data 

Soil maps, especially those from which may be derived information about fertility, pH and particle size (affecting 
vegetation cover, pH and turbidity of water bodies). Some appropriate data are available from the European Soils 
Database, hosted at the JRCv, and soil moisture information can be derived from METEOSAT satellite imagery and 
a number of climate change databases such as ENSEMBLE.  

2.3 Environmental data processing 

The environmental data were processed in several ways to produce data layers that may in some way be more 
suitable for modelling purposes. The overall strategy of such data processing is threefold: 

 To produce orthogonal data sets from serially correlated multi-temporal data. PCA and temporal Fourier 
analysis (TFA) both achieve this objective, but the latter is preferable because it does so in more biologically 

interpretable ways. 
 To determine environmental discontinuities that may act as a barrier to the spread of a vector and/or 

disease. Such discontinuities may be identified by wavelet analysis of single images, which may be regarded 
as the spatial equivalent of TFA. Wavelet analysis is preferable to Fourier analysis of single imagery (which 
is an option in many remote sensing packages) because it provides a local rather than global analysis. Since 
wavelet analysis is also a hierarchical technique, it is possible to produce multi-scale measures of 
environmental discontinuities, and at a scale appropriate for the species concerned.  

 To determine the spatial structure of suitable habitat types. Packages such as FRAGSTATSvi are able to 
identify clumps or blocks of particular vegetation types, and to summarise this information in the form of 
mean area of block, mean perimeter, etc.  

2.4 Ancillary data  

Demographic data 

Human population density and distribution at as fine a scale as possible, currently most widely available as 1km-
resolution raster layers provided by the Global Rural Urban Monitoring Project (GRUMP) produced by the Gridded 
Population of the World projectvii, and held in the E3 archives.  

Transport networks and travel 

The current study provides a way of assessing the likelihood of spread that does not rely on knowledge of the 
transport infrastructure and the number of travellers using it. Such information may, however, prove to be useful 
additional indicators of spread risk for some diseases.  

Layers for major road and rail networks, and ports of entry to the EU, can sometimes be acquired from public 
domain sources such as VMAP0, and in due course form the forthcoming higher resolution VMAP1, derived from 
the 1:250 000 Joint Operation Graphics (JOG) aerial navigation maps.  

Host data 

Data for the distribution and abundance of any hosts (birds; mammals both domestic and wild) likely to be fed 
upon by the mosquitoes, and information on the likelihood that such hosts might act as disease reservoir species. 
These are so far relatively difficult to find, especially at a continental level and at an acceptable resolution. They 
are likely, however, to be a focus of attention by the forthcoming FP7 EDENext project, which will collaborate 
closely with the ECDC E3 data archiving activities. 

  

 

                                                                    
v http://eusoils.jrc.ec.europa.eu/ESDB_Archive/ESDB/index.htm 

vi http://www.umass.edu/landeco/research/fragstats/fragstats.html 

vii http://sedac.ciesin.columbia.edu/gpw/ 
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3 Interpreting model results 

3.1 Example model output: Aedes albopictus in Europe 

As an example of the above exercise, this section highlights the conclusions of a map produced as part of the 
ECDC project modelling of Aedes albopictus’ distribution5, using firstly just one database of this species’ invasion, 
so far, of Europe. The risk map is shown in Figure 2. Because the presence records are most numerous in, and 
more or less restricted to, northern Italy, the risk map highlights this area as being suitable for Ae. albopictus, with 
much of the rest of Europe apparently unsuitable. 

The key variables across the 100 bootstrap models are shown in Table 1. Rainfall and temperature variables play a 
major role in this model. The WORLDCLIM rainfall phase 2 variable has a mean rank of 1.04 across all 100 
bootstrap models, indicating that it was chosen as the first variable in virtually all 100 models. The second and 
subsequent variables have much lower mean ranks indicating that, although they were important, they were not 
consistently selected in the same rank order across the 100 models. 

Table 1. Model 2, Aedes albopictus: overall ranking of variables 

Variable Rank Description 

wj0857p2 1 Rainfall from WORLDCLIM database (biannual phase)9 

wj1557a0 2 Day time land surface temperature from MODIS (mean, 2001–2005)10 

wj1508mx 3 Night time land surface temperature from MODIS (maximum) 

DEM 4 Digital elevation model from SRTM 

wj1507a0 5 Day time land surface temperature from MODIS (mean) 

mmph50p2 6 Precipitation estimates processed acc. CMORPH (biannual phase) 

wj0857a3 7 Rainfall from WORLDCLIM database (triannual amplitude) 

wj1508p3 8 Night time land surface temperature (triannual phase) 

wj0857p3 9 Rainfall from WORLDCLIM database (triannual phase) 

wj1507mn 10 Day time land surface temperature from MODIS (mean) 

Table shows the mean rank values of the top-ten ranked variables from all 100 bootstrap models. 
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Figure 2. Risk map for Model 1, Aedes albopictus 

This risk map is the average of 100 bootstrap models each based on a sample of 200 presence and 200 absence pixels selected 
at random, with replacement from the training for this vector (see text for more details). Risk is on a probability scale from zero 
to 1.0. Probabilities from 0.0 to 0.49 are coloured green (darker to lighter) and indicate conditions not suitable for the vector 
(i.e. predicted absence of the vector). Probabilities from 0.50 to 1.0 are coloured yellow through to dark red, indicating conditions 
increasingly suitable for the vector. Grey indicates no prediction was undertaken. 
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3.2 Aedes albopictus in Europe: detailed analysis 

We can examine the performance of this model in more detail. Figure 3 shows a detail of the predictions centred 
on Italy. The upper figure reproduces part of Figure 2 but includes the presence points here identified by clusters. 
As mentioned above, clustering is a way of rendering non-multivariate data multivariate normal for discriminant 
analysis. The fact that here we see the three different clusters for presence arranged in an obvious geographical 
pattern illustrates the rather different habitats experienced in these different areas (for example, differences of 
more than 2.5 °C in mean daytime land surface temperature values across the three presence clusters). 

The lower part of Figure 3 shows the same datapoints on top of the Mahalanobis distance (MD) (Box 1) image for 
this Ae. albopictus risk map. Once again, the MD image is the mean of 100 such images from the 100 bootstrap 
models. Inspection shows that none of the presence datapoints fall in places with MDs greater than about 40 (the 
MD colour scale is indicated in the legend on the lower part of Figure 3). In other words, an excellent fit to the 
European data for Ae. albopictus is obtained from a model that selected a suite of variables that could characterise 
the European presence data fairly precisely in multivariate space.  

But is this what we want from a risk map of an invasive species? As the experience in North America shows, Ae. 
albopictus first established in limited and presumably very favourable conditions, and later spread into a much 
wider range of habitats. What will this ‘wider range of habitats’ be for Ae. albopictus in Europe?  

 

  

What is a Mahalanobis distance and how can it be used in risk 
mapping?  

The Mahalanobis distance between two sets of points (in the present case defining vector presence and 
absence) is the environmental distance between the two sets of points adjusted for the covariance of the 
variables. When Pythagoras defined the length of the hypotenuse of a right triangle, he was defining the linear 
or Euclidean distance between two points (two vertices of the triangle). Pythagoras’ theorem can be used to 
determine the linear distance between any two points on a flat plane. However, when the two points define the 
mean or ‘centroid’ of two clusters of points, the Euclidean distance is not always the best measure of 
separation, as illustrated in the diagram below. 

 

The three ellipses define the confidence intervals of three different clusters of points. The centroid of each 
ellipse is indicated by the small circle. The Euclidean distance between the red and green circle is the same as 
the Euclidean distance between the red and blue circles. But there is much more overlap between the red and 
blue ellipses than between the red and green ellipses. In some sense, the blue cluster is ‘closer’ to the red 
cluster than the green cluster. This greater closeness is captured by the alternative measure of separation in 

multivariate space – the Mahalanobis distance (MD) – which is defined as the distance between two clusters 
adjusted by the covariance of each cluster.  

Prasanta Chandra Mahalanobis (1893–1972) was an Indian mathematician, founder of the Indian Statistical 
Institute. The Mahalanobis distance is arguably the best measure of separation in multivariate space of co-
varying variables. 
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Figure 3. Model 2, Aedes albopictus 

The upper figure shows a detail from the risk map in Figure 2. The individual clusters of presence are identified by the three 
colours shown in the legend (red, green, blue); the pseudo-absence points are indicated by dots. The lower figure shows the 
same points on the Mahalanobis distance image from the same model (the average of 100 such images from the 100 bootstrap 
models). The presence points fall within the lower range of MD values (approximately < 40)  
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3.3 Employing risk maps to predict future vector 
distributions 

We can begin to answer the question posed at the end of the previous section by first looking at the global risk 
map for Ae. albopictus (Figure 4). This was produced by amalgamating five different regional and global risk maps 
for this species5 and is shown in Figure 3, both with and without the global dataset for the presence of this species. 
Figure 5 shows the MD image for this combined model. This MD image was produced by combining the five 
averaged MD images for each of the five models. Combination involved selecting from among the five the lowest 
MD value. This is similar in concept to ensemble climate models which combine the outputs of several models into 
a single output – in this case indicating the minimum distance produced by any of the models where Ae. albopictus 
has been recorded. It can be seen in this global model that Ae. albopictus occurs up to higher values of 
Mahalanobis distances than was the case for Europe. This is hardly surprising given that the European risk map 
was regional whereas Figure 4 is global, but the significance is that if Ae. albopictus can inhabit a wider range of 
habitats globally, then it can also inhabit a wider range of habitats locally, within Europe, than it has done so 
already. 

Details of the global map in Figures 4 and 5 are shown in Figure 6 for the region of northern Italy. The maps 
include the presence/absence dataset of the European model of Figure 3. The upper map in Figure 6 shows that 
far more of Europe appears suitable for this species, based on its global distribution data, than was apparent in 
Figure 4. This is supported by the MD image in the lower part of Figure 6. On the basis of Ae. albopictus’ global 
distribution, the contrast between northern Italy and other parts of Europe is not so great environmentally as was 
suggested by Figure 3 (lower). This map suggests not only that Ae. albopictus is likely to spread beyond its present 
limits in southern Europe, but also the directions in which this spread is most likely. In other words we might be 
able to plan a monitoring and surveillance scheme for the future spread of this species based on the types of 
imagery and analysis shown in Figure 6. 

Figure 7 (upper) shows the same MD image as in Figure 6 and (lower) which of the five contributory models these 
values came from (for clarity the data points are omitted). For large areas of Europe (red and green) the lowest 
MD values come from models based essentially on global datasets (Models 1 and 4, respectively). Relatively few 
areas are derived from the European-only model, Model 2 (pale yellow areas in Figure 7, lower). 
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Figure 4. Global model for Aedes albopictus 

This is the final global map for this species produced by amalgamating the results of five different (global and regional) models. 
Upper with all the presence points used in all five models, lower without the presence points. Risk is on a probability scale from 
zero to 1.0. Probabilities from 0.0 to 0.49 are coloured green (darker to lighter) and indicate conditions not suitable for the vector 
(i.e. predicted absence of the vector). Probabilities from 0.50 to 1.0 are coloured yellow through to dark red, indicating conditions 
increasingly suitable for the vector. Grey indicates no prediction undertaken. (Reproduced from ECDC5.) 
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Figure 5. Mahalanobis distance of global model for Aedes albopictus 

These maps show the Mahalanobis distance image for the combined global maps of Figure 4. Upper with all the presence points 
used in all five models, lower without the presence points.  
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Figure 6. Details of global model for Aedes albopictus 

The upper figure shows a detail from the risk map in Figure 4. The individual clusters of presence for the European (TigerMaps) 
dataset are identified by the three colours shown in the legend (red, green, blue); the pseudo-absence points are indicated by 
dots. The lower figure shows the same points on the Mahalanobis distance image from the global model, produced by selecting 
the lowest MD from the five MD images of the five different models for this species.  
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Figure 7. Details of Mahalanobis distance of global model for Aedes albopictus 

The upper figure shows the Mahalanobis distance image from the global model, produced by selecting the lowest MD from the 
five MD images of the five different models for this species. The lower figure indicates which of the regional or global models 
(Models 1 to 5) contributed the MD values in the upper image (original). 

 

 



 
 

 
 

TECHNICAL REPORT Environmental risk mapping: Aedes albopictus in Europe 
 

 
 

15 

 
 

 

Aedes albopictus in Europe: predicting future spread 

We can predict the likely future direction of spread of Ae. albopictus in Europe by refining our view of the MD 
image shown in Figures 6 and 7. This is shown in Figures 8 and 9 for different regions of Europe. The same MD 
image has been used as before, but in this case the range of MD values from 0 to 75 is shown rather than the 
range 0 to 100. This has the effect of keeping in pale colours sites that are more similar to presently occupied sites. 
It is along these routes that we might expect Ae. albopictus to spread first. The very strong message from Figures 
8 and 9 is that these spread routes for Ae. albopictus are along many parts of the northern Mediterranean coast 
and, inland, along extensive river systems or along road networks. 

Aedes albopictus in Europe: a monitoring programme for future 
spread? 

These maps suggest that a monitoring and surveillance system should concentrate on the areas within Europe 
highlighted as likely spread routes in Figures 8 and 9.  

Many variables must be considered when deciding whether to implement a mosquito surveillance system and how 
to customise surveillance methods to the various local situations. ECDC has produced guidelines to deal with these 
questions

11
. 

Ovitraps are probably the simplest and most effective way of monitoring the presence of Ae. albopictus in any area, 
and the maps presented here could be used as a guide to where to place such traps. It is strongly recommended 
that such a sampling system not only monitors the spread of this mosquito, but also the accuracy of this sort of 
approach to vector and disease monitoring in general. This is best done by having a series of transects along the 
major predicted spread routes combined with transects at right angles to them that sample progressively less 
suitable areas. This would possibly be most easily done along the Rhone and Rhine rivers in France and Germany, 
with the cross transects heading up towards the Alps, where conditions appear to become rapidly less suitable for 
Ae. albopictus. However, large rivers and mountains can also be barriers for mosquito dispersion where they are 
less travelled by humans. 

Examples of this suggested approach are shown in Figure 10, where parts of the imagery have been selected with 
rapid changes in MD with distance from water courses. What is particularly surprising about these images is that 
they were effectively derived from satellite data that does not ‘see’ water directly, but only in terms of the climatic 

and vegetation conditions associated with water. Even the rainfall layers (major contributors to the risk maps 
globally) would not on their own have produced these patterns, since rainfall does not fall only along water courses. 
Nevertheless the MD imagery shows low values along water courses. These areas are climatically more similar to 
sites inhabited by Aedes albopictus globally than any other areas in Europe. 

In setting up the sampling programme suggested above it is recommended that the sort of imagery displayed here 
is combined with higher resolution Landsat, SPOT or similar imagery which shows more details of infrastructure 
(roads, fields, etc.) which will affect the placement of traps. For such activities, clearly, the higher resolution the 
better the results, as the placement of a few meters could result in big differences as concerns the collection of 
mosquitos.  

While the MD images exploit information about habitat seasonality captured by temporal Fourier analysis 
(seasonality that is usually a vital determining factor for the presence or absence of species), higher resolution 
imagery contains more information on the fine-scale structure of habitats. It is a matter of debate whether such 
higher resolution imagery should be classified into land-cover types (fields, forests, farms, etc.) using supervised or 
unsupervised methods before they are used, or whether the raw data should be used directly. Geographers tend to 
favour classification; but any classification into land-cover types involves dividing continuous reflectance values into 
discontinuous categories. There are bound to be errors in this process and these are likely to be concentrated at 
ecotones – boundaries between land cover types – that are often important for invertebrates, both as areas in 
which to live and as corridors along which to move. Meanwhile, some advances have been made in classification 
techniques that take into account biological ‘threshold’ levels, which are important for models that are more 
biologically rather than statistically driven. 

Unrealised habitat space for Aedes albopictus in Europe. 

Confirmation of unutilised realised habitat space within Europe comes from Figure 11, which shows a series of 
frequency histograms of Mahalanobis distances (MDs) from the global Ae. albopictus map. Each frequency 
distribution is the distribution of MDs from the centroid defining Aedes albopictus’ known presence somewhere on 
the globe. Figure 11 is best interpreted by remembering that low MDs indicate conditions similar to those in which 
Aedes albopictus has been reported, while high MDs indicate conditions quite different from known Aedes 
albopictus areas. The red curve shows the frequency distribution for the global dataset of presence points 
excluding the European database. In other words, it is the frequency distribution of MDs of individual points in the 
global dataset from their collective centroid. The blue curve shows the frequency histogram for the European 
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database. The mode of the blue curve is displaced to the left compared with the mode of the red curve. This is 

because MDs are on average less for the European dataset; if mosquitoes inhabit a smaller range of more similar 
habitats then their collective frequency distribution will contain more, lower values of MDs from their collective 
centroid. A comparison of the red and blue curves shows that globally Ae. albopictus inhabits a wider range of 
habitats (larger MDs) than it does just within Europe.  

Therefore, if there are conditions in Europe corresponding to the MD values associated with the bulk of the red 
curve, they represent areas within which Ae. albopictus can survive in Europe even though the species has not yet 
reached them. That this is the case is shown by the green curve which is the frequency distribution of MD values 
taken at regular intervals (Figure 11). This is the frequency distribution of the selected European points from the 
centroid of Aedes albopictus’ global distribution. While much of northern Europe is clearly unsuitable for the 
species (i.e. many parts of Europe have high MD values) there are sufficient areas elsewhere that appear to be 
suitable. In fact, there are proportionately fewer areas on the green curve corresponding to the mode of the blue 
curve (current European Aedes albopictus’ distribution) than there are areas with slightly higher MD values 
coinciding with the mode of the red curve (Aedes albopictus’ global distribution). The conclusion from these three 
histograms therefore is that there are proportionately more areas in Europe that appear to be suitable for Ae. 
albopictus than have currently been invaded by it. We should expect this species to spread very much farther in 

Europe than it has done so already. 
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Figure 8. Future spread of Aedes albopictus in south-western Europe  

Predicted future routes of spread of Ae. albopictus in France (upper) and Spain (lower). The MD images are stretched over a 
range of values to reveal areas of greatest similarity to presently occupied areas. Clearly, river systems are the likely major 
spread routes in Europe (original). 
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Figure 9. Future spread of Aedes albopictus in south-eastern Europe 

Predicted future routes of spread of Ae. albopictus in the northern Adriatic region (upper) and in Greece (lower). The MD images 
are stretched over a range of values to reveal areas of greatest similarity to presently occupied areas. Once again, river systems 
are the likely major spread routes (original). 
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Figure 10. Future spread of Aedes albopictus in central Europe 

Details from Figure 7 for two regions showing the rapid increase of MDs with distance away from water courses. Upper figure, 
region south-west of Paris; lower figure, border area of France/Switzerland/Germany (original). 
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Figure 11. Frequency distributions of Mahalanobis distances 

The red curve is the frequency distribution of MDs from the global model but excluding the data for Europe. The blue curve is the 
frequency distribution for just the European presence data (from Tigermaps4). Notice that the mode of the global curve is shifted 
to the right compared with the blue curve, indicating that Ae. albopictus inhabits globally a wider range of conditions than it does 
in Europe. The green curve is the frequency distribution of values extracted from a regular grid placed over Europe and sampling 
at regular intervals within a window running from 35N to 60N and from 11W to 26E. The mode of this curve is shifted to the right 
compared with the other two curves because many areas of northern Europe, sampled by the grid, are unsuitable for this species. 
However, there are, proportionately speaking, more areas of Europe not yet occupied by Ae. albopictus that show conditions 
similar to those inhabited by it globally than there are areas already occupied by this species in Europe (because this part of the 
green curve is gradually increasing towards the modal value). The relative heights of the different histograms are functions of 
sampling intensity and are hence not a good guide to the total area that is suitable for this species in Europe. Imagine the blue 
curve reduced to fit inside the green curve, since it represents a subset of European environmental space, sampled more fully by 
the green curve (original). 

 

3.4 Understanding model limitations 

The outcome of any risk map is dependent on the type of modelling approach used, the input variables, the time-
frames of the variables used, and many other factors. It is essential that public health practitioners understand that 
models are nearer to representing ‘best estimates’ rather than the ‘truth’. One limitation to the NLDA approach 
described here is that ‘external’ validation of the models is very complicated. Methodologically, the bootstrapping 
approach helps to ensure the ‘internal’ validity of the model, but it is not possible to assess whether the variables 
modelled are the best ones – this often comes down to the expert judgement of the modeller and their 
collaborators. Similarly, there are no independent datasets that could prove or disprove the results of this model, 
given that we are modelling places likely to be suitable habitats for Aedes albopictus – it is only if or when Aedes 
albopictus comes into these habitats that the question of the suitability will be answered. 
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Conclusion 

In this handbook we have taken a risk map produced via the non-linear discriminate analysis methodology and 
interpreted it in several ways to show the potential for Ae. albopictus to spread further in Europe. These 
interpretations show the places that are likely to be suitable and the potential spread routes that the vector might 
use to reach such places. In turn these provide the potential for targeting monitoring resources as efficiently as 
possible, to check on the spread of this species in the near future. 

It should be emphasised that all of these conclusions are based on models which may be wrong, and that there 
are multiple different possible approaches to risk mapping that have not been discussed here. Therefore a decent 
monitoring scheme should not only be positioned according to current predictions and be able to capture spread if 
the model is correct, but also be set up to test whether the model is correct in the first place. It can do so by 
sampling not only areas of predicted greatest suitability, but also areas of predicted greatest change in suitability. 
Thus model validation and application occur simultaneously. New records feed back into the modelling process 
progressively to improve the models locally. 

Risk maps can indicate which sites are more likely for local transmission to occur. They are an increasingly 
important tool in public health, helping to address questions about the possible impact of climatic and 
environmental change on the potential distribution of vector-borne diseases, and on where vector- or disease-
surveillance initiatives might be most wisely implemented. ECDC intends to facilitate such activities through 
initiatives such as VBORNET and the E3 network.  
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Annex. Tutorial exercise for NLDA modelling 

This tutorial serves as an introduction to the eRiskMapper software for creating disease risk maps. Operation of the 
software is described using a set of remotely sensed (MODIS 1km) climatic variables as environmental data and 
some vector presence and absence datasets (mosquito distributions in south-eastern Europe). The first exercise 
runs through the creation of a non-linear discriminant analysis model to produce a risk map from some known 
disease presence points. Following this, the processing of presence data known only to administration district level 
is dealt with. The tutorial concludes with a series of exercises to attempt once you have mastered the basic 
functions of the software. 

A 1.1 Overview 

eRiskMapper is a user-friendly application for creating disease risk maps. A risk map shows the modelled 
distribution of a particular disease or vector over a region and is created by applying an algorithm to a set of 
training data (of known disease presence or abundance and absence) associated with a set of predictor variables 

often derived from climatological databases or earth-orbiting satellites. Risk maps identify areas of possible disease 
risk across the entire area covered by the training set and often regions well beyond the training set’s geographic 
limits. eRiskMapper is introduced here by means of a series of worked examples. This software is currently still a 
beta release; please send any bug reports, requests or comments to: david.morley@zoo.ox.ac.uk. 

A 1.2 Getting started 
Ensure that you have downloaded and installed the latest version of eRiskMapper from the FTP site: ftp://tala-

ftp.zoo.ox.ac.uk/EDEN/EDENLDA/ (username: EDENLDA, password: Ox4ordUn1), or you have copied the data 

across from an Oxford University hard drive. 

For this exercise we will be using MODIS images covering Europe. These data are temporal Fourier transformed 
(TFA) and are at a spatial resolution of 1km. Ensure that you have downloaded/copied the folders ‘MODIS Imagery’ 
and ‘ESA Test data’ to a local drive on your computer.  

The disease data we are using is this demonstration are the distribution of a species of mosquito (Anopheles 
labranchiae), as recorded by Kuhn et al12. These data have been extracted from literature published between 1927 
and 2002. The dataset covers the whole of Europe but to make this tutorial run faster, we are going to focus on a 
subset of these data and investigate a region covering south-eastern Europe. 

A list of the files needed to complete this tutorial is given below: 

Files needed Description 

EG******.rst (and .rdc) MODIS imagery: ~90 European images, IDRISI raster format (~180 files) 

A_Lab_PA.csv Text file of A. labranchiae point presence data 

A_Lab_PREV.csv Text file of A. labranchiae point prevalence and absence data 

ItalyLVL2.rst (and .rdc) IDRISI raster image of Italian level 2 administrative district boundaries (two files) 

A_Lab_ADMIN.csv Text file of A. labranchiae administrative level presence and absence data 

A 1.3 The basics 

eRiskMapper is an entirely GUI-based application. Upon loading, the main display window is presented (Figure A1). 
Model results will be plotted in the upper-left panel, while a log of the model making process will be kept in the 
right-hand panel. The menu strip contains various tools to convert between raster data types, to display data and 
view model results. 
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Figure A1. The main eRiskMapper interface 

 

Making a mask file 

As our environmental data cover the whole of Europe, we must create a mask file to restrict the analysis to our 
area of interest over south-eastern Europe. 

To create a mask, use the IDRISI file viewer: 

 Start eRiskMapper. 
 Go to, Tools  IDRISI File Viewer, in the main menu strip 
 The file viewer window opens. Click, ‘Load file’. 
 Select, ‘EGV490LW.rst’ from your MODIS imagery folder. This will display the European-wide land/water 

mask. Our new mask will be a subset of this image. 
 Click on ‘Make mask’; a small window containing bounding box co-ordinates will appear. 
 Ensure that ‘Set background’ is checked with value 0. 
 On the map, click and hold the mouse to draw a box around a region containing (approximately) only Italy 

and the Balkan countries (see Figure A2 as an example).  
 Ensure that the top-left and bottom-right x,y co-ordinates are similar to those shown in the ‘Make mask’ box 

in Figure A2. 
 If you are not happy with your box, click on the image and start again. 
 Once you have a suitable box, click ‘Save’ and call the file ‘ItalyMSK.rst’ (filename must include ‘MSK’ or 

‘MASK’ to be recognised as such) and save it in the same folder as the MODIS imagery (important!). 
 The mask will now save; do not do anything until you see a message box telling you that the mask file has 

been saved. 
 View the new mask by clicking ‘Load file’ and selecting ‘ItalyMSK.rst’ 

Figure A2. Creating a mask covering Italy and surrounding areas 
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A 1.4 Setting up an NLDA model 

For the first exercise we will create a model using non-linear discriminant analysis (NLDA) with bootstrapping using 
the A. labranchiae data, and focused on south-eastern Europe. 

We are now ready to start running the model: 

 Click, ‘Start’ on the main window. This will launch the ‘Model details’ dialogue. 
 For this exercise, we would like a non-linear discriminant analysis model. Ensure that this option is selected. 
 The data type is point/pixel level, as we have precise x,y coordinates of our disease presence locations. The 

second section of this tutorial will explain how to deal with data recorded only to administrative district or 
polygon level. 

 The data scaling should be set as ‘Probability scale’. Here, we only know that the disease is either present 
or absent; there is no information about prevalence or abundance. 

 In directories, click ‘Add’ and navigate to the directory containing the MODIS imagery. Also set a directory in 
which to store all the model output to be created. It is a good idea to create a new directory for each new 
model run. Click ‘Done’ when you are finished. 

Next, we need to specify the imagery: 

 All available imagery sets in the folder(s) selected above will be displayed here. For this exercise, there 
should be just one set – the MODIS imagery with dimensions 8500 x 5000 pixels and ~115 images in total. 
Ensure that this set is selected using the checkbox. 

 Ensure that the box ‘Replace drop-out values’ remains unchecked. 
 Use the drop-down list to select the mask we have just created, ‘ItalyMSK.rst’, as the primary mask.  

Leave the secondary mask box as ‘None’.  
 Click on the ‘Model options’ tab at the top of the dialogue box. Accept all the default values, but give the 

model a new name if you like. This name will prefix all output files created. 
 Click, ‘Done’ to continue. 

The ‘Point presence/absence box’ will pop-up. Here, we must specify our response data. 

 We are creating a new data table, rather than loading an existing one. Ensure that, ‘Create new datatable’ 
is checked. 

 The presence data for this example are in the form of a text file giving a list of the precise latitude/longitude 
locations of known presence points. Select ‘Presence data from coordinate list’ and navigate to the file 
‘A_Lab_PA.csv’. 

 Although recorded, this dataset contains too few absence points over our masked region; we must instead 
generate pseudo-absence locations. Select ‘Generate pseudo-absences’ and click on the ‘Options’ tab at the 
top of the dialogue. 

 Specify the minimum and maximum distance that an absence point must be from any recorded presence 
location as 0.3 and 0.75 respectively (these are distances in decimal degrees). There are also options to 
confine absences further, using an environmental distance, and to screen for input errors. We will not be 
using these functions in this example. 

 If you have time later, experiment changing the minimum and maximum buffer distances for pseudo-
absence locations. Notice the effect that this has on the final model. As a result, it is important to consider 
the choice of these distances carefully when creating your own models. 

 Click, ‘Done’ to proceed. 
 Note that the text window on the main form is keeping track of all options selected during the modelling 

process. On completion, this log is saved as a record of the details of the model created. 

Select number of points 

eRiskMapper has now plotted the presence locations and all possible pseudo-absence locations on screen (Figure 
A3). The presence/absence counts box shows that we have 206 presence and 257 409 possible absence locations.  

 This is obviously far too many absence locations, so we are going to pick a random sub-sample from these. 
In the sample size box, enter 206 for presence (that is, we keep all presence locations), but enter 600 for 
absence (to take a random 600 from the total of 257409). 

 Click, ‘Done’ to continue. The sampled points will now be displayed on screen. 
 Use the + and – buttons, the scroll bars and scroll box in the main window to zoom and pan the map. 
 If you want to, go to: symbols  change symbols, to change the style and size of the map symbols. 
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Figure A3. All possible presence (red) and pseudo-absence (light green) locations, before (left) and 

after (right) sub-sampling  

 

Extract environmental data 

 Click, ‘Import RS data’ on the main window to continue. This displays a list of all the environmental 
variables available. Each one corresponds to an individual raster layer. 

 Variables in the left panel will be considered as candidate explanatory variables during modelling. Variables 
in the right panel will be removed from all further analysis. To move variables, highlight them with the 
mouse then use the ‘>>>’ and ‘<<<’ buttons to move them between panels. 

 For this example, remove all variables ascertaining to the percentage variability in the annual, bi-annual, tri-
annual and annual to tri-annual cycles. You should have removed a total of 24 variables. 

 Click, ‘Done’ to continue.  
 The next window will show DN conversion factors and drop-out value flags. This is used to convert values 

stored as integers in raster layers back into their real values and also to detect any missing data. 
Conversion factors are automatically read from a raster layer’s documentation file, you do not need to alter 
these values, so just click ‘Done’ to proceed. 

 Environmental values for each presence and absence location will now be extracted from each raster layer. 
This may take a couple of minutes. 

Data clustering 

The data must now be split into a number of multivariate normal clusters to ensure greater accuracy of the 
discriminant analysis routine. Discriminant analysis requires input distributions to be multivariate normal. As a 
disease may be found under a variety of environmental conditions, the single distribution summarising these 
conditions is unlikely to be multivariate normal. Splitting the complete presence (or absence) distribution into a 
number of smaller clusters has the effect of creating a new set of distributions each covering a shorter 
environmental gradient. As a result they are more likely to be multivariate normal. 

Clustering is achieved using the k-means algorithm: 

 Click, ‘k-means cluster’ in the main window. 

 Set the parameters for the k-means algorithm. Ensure that you use ‘Smart Centroids (k-means++)’, this will 
make an optimal clustering more likely. Accept the default values for all other options. 

 On clicking ‘Done’, you will be asked to select the variables used to cluster the data (this will be a subset of 
all the variables available). This dialogue box functions in the same way as the one used in Section A 1.4 
(Extract environmental data). To cluster the data, we will use the DEM and all components (except the 
three phases) of daytime LST, NDVI and middle infrared. You should now have 22 variables selected. 

The k-means algorithm will now run and cluster both the presence and absence data into two to eight clusters 
inclusively. You must now decide how many clusters are in the dataset. This is a difficult choice, but several indices 
are calculated to aid this decision. See the help files for more details. 

 Results for the k-means clustering are now shown (Figure A4: Results of k-means clustering.). The upper 
panels show the size of potential clusters if the data are partitioned into two to eight clusters. The lower 
panel shows the results of the optimal clustering indices. 

 Look for the greatest CHANGE in the jump method and put the MAXIMUM in all other indices to indicate the 
most likely number of clusters. Results will vary as we are using a random subset of datapoints. You will 

rarely need more than four or five clusters for either absence or presence. For this example, use one 
presence and two absence clusters. 
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Figure A4. Results of k-means clustering 

 

Presence is on the left, absence on the right. The upper panels show the resultant class sizes for possible 
clustering of two to eight classes. The lower panel shows graphs of indices attempting to define the optimal 
clustering. Use the spinners at the top of the form to select the number of presence and absence clusters needed. 

Exploratory spatial data analysis (ESDA) 

eRiskMapper provides a tool to carry out ESDA. This enables users to fully understand their dataset and view it in 
the context of environmental data, identify outliers or trends, and highlight areas for future data collection. 

 In the main menu, select Tools  ESDA. Click, ‘Yes’ when asked if you want to calculate error ellipses. The 
ESDA window will launch (Figure A5).  

 Use the X and Y drop-down boxes to select two variables to plot against each other. Note that each cluster 
defined in Section A 1.4 is given a different colour. Click on the legend in the bivariate plot to change these 
colours. Summary statistics for each cluster are also given in the datatable at the bottom of the window. 

 Click on a point in the graph. You will notice that it is now highlighted. The location of this point is now 
shown on the map, as well as its details in the datatable. Clicking on a point in the map or table will also 
highlight the same point in the graph or table too. 

 To select multiple points, click and hold the mouse button to drag a box around a cluster of points. 

Alternatively, hold the ‘Ctrl’ key and click on multiple points. 
 The tabs above the bivariate plot enable the graph to be viewed as histograms. 
 Select a single point on the map or the bivariate plot, then click on the ‘Google Map’ tab. The location will 

automatically be displayed using Google Maps. 
 Click on ‘Add layer’ and select an image. This will place your selected environmental raster layer as the base 

map for the training set locations. Checking ‘Query layer’ will allow you to click on the map to obtain the co-
ordinates and variable value for the click location. 

 When you are finished, click ‘Done’ to close this window. 
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Figure A5. The ESDA viewer 

 

Non-linear discriminant analysis 

We are now ready to run the model and produce the risk map. First, the options for variable selection need to be 
selected. 

 Click, ‘NLDA’ on the main window to continue. 
 In the variable selection tab, keep all the default settings. We are creating a model via NLDA, using 

standardised data, separate covariance matrix, equal prior probabilities, and with variables chosen by 
stepwise selection based on minimising the AICc (threshold value 5). 

 Also check the box to create Mahalanobis distance images and select ‘to nearest presence class’. This will 
create images showing the similarity of each pixel to the conditions described by presence locations in the 
training set. 

 In the bootstrapping tab, ensure that the box to carry out bootstrapping is checked and that we want to 
bootstrap both presence and absence data. 

 Usually we use 100 bootstraps, but this can take many hours to process. For the sake of this tutorial reduce 
this to two bootstraps. 

 Uncheck, ‘Save each bootstrap raster’. Only use this option if you want to keep a raster image of each 

intermediate bootstrap model. However, doing this can quickly use a lot of hard disk space if running many 
bootstraps. The memory usage panel will warn you if this may be a problem. 

 Select, ‘Bootstrap both presence and absence’ and choose to bootstrap with 75 presence and 75 absence 
points and ensure that the checkbox ‘Carry out validation’ is checked with a percentage of 50%. This will 
use half the points not selected for a particular bootstrap as a validation dataset. 

 We do not want to force any variables into the model, so there is no need to go to the ‘Force variables’ tab. 
 Click ‘Done’ to start running the model. Note that this may take several minutes. 

Model results 

During model running 

 Results for each bootstrap will be displayed as they are created. This consists of a map and a table of 
accuracy statistics and details of the variables chosen by the model (Figure A6). 

 Look at the model details displayed on screen: You will see which 10 variables were included in the model 
and their rank of importance. The correlation matrix shows the relationship between these 10 variables. The 
classification matrix shows how well the model classified the observed data. For a perfect model, all values 
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fall on the main diagonal of the matrix. Also shown are the probability that a point from a certain class will 

be assigned to each of the others and a table of producer and consumer errors. 
 Note also the sensitivity and specificity. A value of 1 for sensitivity means all actual presences have been 

recognised (0 would indicate none have been recognised). A value of 1 for specificity means all actual 
absences have been recognised. 

 Values of Cohen’s kappa and Klecka’s tau also range from 0 to 1. Models with a perfect fit will have a value 
of 1 for each of these. 

At the end of the model run, after all bootstraps have been carried out: 

 A rainbow plot is created showing the variables selected over all bootstraps. This is useful to identify the 
most common variables. (It is not so useful here as we only have two or three models to compare). Click on 
the help button for this window to see a full rainbow plot. 

 The final risk map (average of all the bootstraps) is shown along with the model log. 
 To view individual model results, go to: Output  Model output in the main menu and enter the number of 

the model you wish to see results for. 
 The model log contains details of the average rank of each variable over all models, the number of times 

each variable was included and an overall assessment of the model performance.  

Figure A6. The results of a single-bootstrap model displayed on screen 

 

Saved results: 

 All results are automatically saved to the directory specified in step 0. 

 All raster files are compatible with IDRISI, ArcGIS and other GIS software. The final risk map is called 
‘Model1_AVPROBCLASS.rst’ (classified into six probability bins) and ‘Model1_AVPROB.rst’ (the raw 
probabilities ranging from 0 to 1). 

 Various other files are saved: the model log, accuracy statistics for each bootstrap, jpegs for each bootstrap 
and the final map, the training set as a datatable, a table of the model classification errors, raster layers of 
Mahalanobis distances, cluster memberships and KML files readable by Google Earth. 

 If you have Google Earth installed, double-click on a KML file to open it. The risk map will automatically be 
draped over the Google Earth globe (Figure A7). 
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Figure A7. Risk map overlay in Google Earth using KML  

 

The first part of this tutorial has shown you how to create a risk map using NLDA and presence data reported to 
specific latitude/longitude point locations and view the results. The next part demonstrates how to deal with data 
recorded only at administrative district level. This is problematic because, unlike point reported data, a presence 
location cannot be related to a single pixel in our environmental data. To demonstrate this, we will start by 
creating a new model. 

A 1.5 Processing presence data at administrative level 

Restart eRiskMapper. 

 Click on the ‘Start’ button on the main interface. 
 Enter the model details as before but be sure to pick ‘District (polygon)’ as the data type and create a new 

folder for the model outputs. Click, ‘Done’ to continue. 
 Ensure that the 8500 x 5000 MODIS imagery is selected. Enter the mask you created in step 0 as the 

primary mask file. Leave the secondary mask option as ‘None’ as before. Click ‘Done’. 

Set the data sources 

 Enter the raster layer defining administrative districts as ‘ItalyLVL2.rst’. This is an image of the level 2 

administration boundaries in Italy. 
 Enter the district code and data list as ‘A_Lab_ADMIN.csv’. This specifies the number of presence cases in 

each district. For the purposes of this exercise, these data have been derived by degrading the real data 
recorded at point level over Italy by Kuhn et al.12 to polygon level. 

 Enter the presence threshold as 1. This means that we will treat districts with low presence (one case or 
less) as absence districts. 

 Ensure the method selected is ‘Clustering’. Click ‘Done’ to continue.  
 You will be presented with a list of all available districts listed by their codes (this list should start at 915). 

Click ‘Done’ as we do not want to exclude any districts. This function would be useful if we wanted to 
remove any districts that correspond to urban areas, for example. 

 The location of all presence and absence districts will be plotted on screen (Figure A8). 
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Figure A8. A. labranchiae presence and absence  

 

Presence (red) and absence (light green), level 2 administration districts in Italy 

Set the clustering options: 

 In ‘Clustering strategy’, check, ‘Cluster a sample’ and enter the sample value as 10%. As clustering is a 
calculation-intensive process, this option will take a random sample of just 10% of the entire dataset and 
cluster it. The remaining 90% of the dataset will then be classed by assignment to their nearest clusters as 
defined by the initial 20% sample. 

 Accept all other defaults. Click ‘Done’ to proceed. 
 Click ‘Select k-means variables’ on the main window. You will now be asked to choose with which variables 

you want to cluster the data. 
 Select the variables to cluster with as the DEM and the means and variances of daytime LST, NDVI and 

middle infrared. 
 Click ‘Done’ to accept the default conversion factors. Then click, ‘k-means cluster’ on the main window to 

begin the clustering. When prompted, select the number of clusters in which to cluster the data to be 100. 

 The clustering will now run. This may take several minutes to complete.  

Identifying absence pixels 

All presence pixels have now been clustered into one of 100 possible clusters. The rationale here is that clusters 
that are found in a large proportion of the presence districts are indicating common environmental conditions and 
therefore probable favourable conditions for disease presence. Clusters indicating environmental conditions found 
in only a few of the presence districts indicate less common habitats and thereby cannot be associated with 
disease presence in the study region. As a result, pixels in these less widespread clusters can be used to define 
disease absence. 

 On completion, a summary of the 100 clusters is presented. They are ranked according to the percentage of 
the original presence districts in which pixels belonging to this cluster are found. A cluster with a value of 
100% would be represented in all presence districts. The number of pixels in each cluster is also given. 

Cluster % Pixels 

1 13.115 395 
2 14.754 16 
3 26.23 2072 
4 26.23 1383 
5 27.869 2681 
6 29.508 987 
7 31.148 721 
8 31.148 2234 

For example, using the above table, a threshold of 15% would remove clusters 1 and 2 thereby reclassing 
411 (395 + 16) pixels to absence. 

 A dialogue box will ask for an elimination threshold. All pixels belonging to clusters with a percentage below 
this threshold will be reclassified as absence points. For this exercise, enter a threshold of 35% and click 
‘Done’ to continue. Usually, you would use a lower threshold (5 to 15%) and repeat the clustering process 
to gradually remove pixels. As this takes time, for this exercise it is more convenient (but less accurate) to 

remove a large number of pixels at once. 
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 You will be asked if you want to repeat this process to remove more pixels. In this case we do not, so click 

‘No’ to continue. 
 You will now be shown the ‘Presence and absence counts’ dialogue box. Here the total number of presence 

pixels and absences are shown (note that the two values sum to the initial total of presence pixels, 11163). 
Select 1000 presence and 2000 absence. eRiskMapper will select these at random from the total available 
and plot them on screen (Figure A9). 

 The remainder of the modelling process proceeds as from section A 1.4 above (‘Extract environmental 
data’). You can either practise and carry on to obtain a risk map for these data, or restart eRiskMapper and 
move to the next exercise. If you choose to complete this model, try experimenting and change the number 
of clusters, variable selection method and number of samples taken at each bootstrap. 

Figure A9. Distribution of sub-sampled presence and absence points after filtering by clustering 

 

Note that due to the stochastic nature of this method, your results may be slightly different. 

Additional exercises 

If you have time, attempt one or all of the exercises below. 

Exercise 1: Point sampling of administrative level data 

Using the MODIS imagery and the administrative districts defined in the ‘ItalyLVL2.rst’ layer and the text file 
‘A_Lab_ADMIN.csv’, create an NLDA (or random forest) using the point sampling approach rather than the 
clustering method described in section A 1.4. 

Hints 
 Enter all data and select the options as you did for the first part of section A 1.6. However, be sure to select 

‘Point sampling’ as the method in the ‘District sampling options’ dialogue. 
 This time try removing a possible outlier polygon. District number 1604 is small and corresponds to the 

urban area of Napoli. If you want to remove this district, ensure you move polygon 1604 to the ‘Districts 
excluded’ box when prompted. 

 Select to sample the same number of points from within each district. Set this figure to be 15. The sampled 

points are then plotted on screen. 
 After random points have been selected, the modelling approach will follow that of the standard NLDA 

approach with point presence data as described above. 

Exercise 2: Using abundance data 

Using the MODIS imagery and the file ‘A_Lab_PREV.csv’, create a risk map based on disease 
abundance/prevalence. Using abundance scaling, the final risk map is not an image of the probability of disease 
presence, but rather an image showing the most likely of a set of classified zones. These zones correspond to a 
discrete class of abundance (e.g. high abundance, 10 to 20 cases, or low abundance 1 to 10 cases). 

Hints 
 Be sure to select, ‘Abundance scale’ in the model details dialogue, otherwise the data will only be treated as 

presence/absence (probability scale) as before. 
 This data set contains known absences (n = 596), so there is no need to generate pseudo-absence points. 

(Select, ‘Absences specified with presence data list’ when entering your data files.). The file 
‘A_Lab_PREV.csv’ also contains 202 presence points along with a value for their disease prevalence. 
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 You will be asked to define the prevalence thresholds (Figure A10). This basically splits your presence data 

into categories of abundance (e.g. high, medium and low = three classes); the final risk map is essentially a 
map of these categories. Use the spinner (on the centre-right of the dialogue box) to select the number of 
classes you want and click ‘Find’. The boundaries will be displayed on the distribution histogram and as a 
list.  

Figure A10. Defining the class thresholds for prevalence/abundance data 

The distribution of the data is plotted as a histogram (ordered from high to low abundance). The selected number of presence 
classes is represented as a series of red lines. The corresponding boundaries and resultant class sizes are shown in the table 
below the graph. 

 

Hints 
 For this exercise, use ‘Equal group sizes’ and pick three classes. Make sure you click the ‘Find’ button to 

accept this change. 
 Absence data cannot be thresholded in this way (since all values are 0); clustering here is done by k-means 

as in part A 1.4. Pick two absence classes. 
 The final risk map is plotted according to the greatest likelihood of a pixel belonging to one these presence 

or absence categories. See the model log for the key to these categories.  

Exercise 3: Combining the administrative level data methods 

Use results from parts A 1.5 and A 1.7.2 to combine presence points from presence districts, but randomly 
sampled locations from known absence administrative districts. To do this you will need to edit the saved 
datatables (in the output directory you specified at the start of each model).  

Hints 
 Using Excel or similar, open up the datatable (Model1_DATATABLE.csv) for the model created in part A 1.5. 

Cut the columns for Longitude, Latitude and P_A and paste into a new document. Make sure you only copy 
across the presence points (coded as 1 in the P_A column) 

 Open the datatable from the model created in part A 1.7. This time, cut the columns for absence (coded 
as 0) and paste into the new document directly underneath the presence data. Your new sheet should have 
three columns and contain both presence and absence data like this: 

Long Lat P_A 
32.5 55.4 1 
34.6 55.7 1 
36.3 54.6 1 
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38.6 53.1 0 

32.4 54.1 0 
34.4 54.8 0 

 Save this new sheet as a CSV file. 
 Run eRiskMapper and create a model using this new CSV table, with the data type as ‘point (pixel)’ and 

specify that absences are specified with presences (do not generate pseudo-absences). 
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