

TECHNICAL REPORT

External quality assurance scheme for *Haemophilus influenzae*

2012

www.ecdc.europa.eu

ECDC TECHNICAL REPORT

External quality assurance scheme for *Haemophilus influenzae*

2012

This report was commissioned by the European Centre for Disease Prevention and Control (ECDC), coordinated by Adoracion Navarro Torne, and produced by Dr Mary Slack (Public Health England, London, UK) on behalf of the IBD-labnet consortium participants.

Suggested citation: European Centre for Disease Prevention and Control. External quality assurance scheme for *Haemophilus influenzae* - 2012. Stockholm: ECDC; 2013.

Stockholm, July 2013 ISBN 978-92-9193-489-8 doi 10.2900/87301 Catalogue number TQ-01-13-358-EN-N

© European Centre for Disease Prevention and Control, 2013 Reproduction is authorised, provided the source is acknowledged

Contents

Abbreviations	. iv
Executive summary	1
Introduction	2
1 Material and methods	3
1.1 Study design	3
1.2 Participants	3
1.3 Timelines	
1.4 The EQA panel material	4
2 Results	
2.1 Part 1. Characterisation of viable isolates	
2.2 Part 2. Antimicrobial susceptibility testing	13
2.3 Part 3. Non-culture detection of <i>H. influenzae</i>	
Overall comments	
Conclusions	20
References	21
Annex 1 List of Reference Laboratories participating in ECDC project	22
Annex 2 Consensus results for Haemophilus influenzae identification, typing and and antimicrobial susceptibility	
testing	26
Annex 3 Example of report generated by UK NEQAS	

Abbreviations

BLNAR BLPACR BLPAR CHLOR CLSI CSF CTR EUCAST EQA NTHi Hib Hif HRU MIC OMP PBP PCR PHE	Beta-lactamase-negative ampicillin-resistant strain Beta-lactamase positive amoxicillin-clavulanate resistant strain Beta-lactamase positive ampicillin-resistant strain Chloramphenicol Clinical and Laboratory Standards Institute Cerebrospinal fluid Ceftriaxone Cefotaxime European Committee on Antimicrobial Susceptibility Testing External quality assurance scheme Non-typable <i>Haemophilus influenzae</i> <i>H. influenzae</i> type b <i>H. influenzae</i> serotype f Haemophilus Reference Unit Minimum inhibitory concentration Outer membrane protein Penicillin-binding protein Polymerase chain reaction Public Health England
TET	Tetracycline

Executive summary

Haemophilus influenzae is a common cause of respiratory tract infections. Most strains of *H. influenzae* are opportunistic pathogens and rarely cause invasive disease unless other factors concur (e.g. viral infections, immunological deficits). Despite the effective prevention of invasive *H. influenzae* serotype b (Hib) infections by the use of conjugated Hib vaccine, infections caused by other capsulated serotypes and non-capsulated strains still occur and are associated with significant morbidity and mortality. Surveillance of *H. influenzae* continues to be of importance, not only to establish the types of *H. influenzae* causing invasive disease but also to monitor the long-term effectiveness of the Hib immunisation programme. An integrated surveillance for this pathogen entails both epidemiological and laboratory surveillance.

ECDC promotes the performance of External Quality Assurance (EQA) schemes, in which laboratories are sent simulated clinical specimens or bacterial isolates for testing by routine and/or reference laboratory methods. EQA schemes or laboratory proficiency testing provides information about the accuracy of different characterisation and typing methods as well as antimicrobial susceptibility testing, and the sensitivity of the methods in place to detect a certain pathogen or novel resistance patterns.

In May 2012 a collection of five strains of *Haemophilus spp* [two non-capsulated *H. influenzae* (NTHi), one *H. influenzae* serotype b (Hib), one *H. influenzae* serotype f (Hif) and one *H. parainfluenzae*] and two simulated samples of cerebrospinal fluid (CSF) (one containing *H. influenzae* serotype b (Hib), one containing non-capsulated *H. influenzae*) was sent to 28 participating reference laboratories in the IBD-labnet surveillance network for quality assurance testing. The laboratories were asked to characterise the five strains by performing standard laboratory protocols for the methods usually used by the laboratory for: species identification, biotyping and serotyping by serological methods and/or PCR. Antimicrobial susceptibility testing and Beta-lactamase testing was also requested for those laboratories that perform antimicrobial susceptibility testing of the isolates on a routine basis.

This EQA exercise has shown several improvements over the 2011 EQA distribution. All European Haemophilus Reference Laboratories routinely serotype isolates compared to 27/29 (93%) in 2011. Nineteen laboratories (68%) perform PCR-based capsular genotyping compared to 15 (52%) in 2011. Twenty four laboratories routinely perform antimicrobial susceptibility testing. The number of laboratories following European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines has increased from eight in 2011 to 14 in 2012.

The EQA scheme identified a few problems with speciation of strains, slide agglutination for the serotyping of strains and antimicrobial susceptibility testing. However, the phenotypic identification and phenotypic serotyping of viable isolates has improved since the last EQA distribution in 2011. All four strains of *H. influenzae* were correctly identified by all participants and the strain of *H. parainfluenzae* was correctly identified by 26/28 laboratories (93%) compared to 18/29 laboratories (62%) in 2011. The number of errors in phenotypic serotyping also declined from 17% in 2011 to 10% in 2012. Conventional serotyping is prone to errors of interpretation because of observer error, cross-reactions and auto-agglutination. These problems can be resolved by using a PCR-based capsular genotyping scheme.

The results of the antimicrobial susceptibility testing indicate that almost all reference laboratories routinely test for Beta-lactamase production in strains of *Haemophilus influenzae* and the results are excellent. The detection of Beta-lactamase- negative- ampicillin- resistance (BLNAR) proved more challenging for several reasons. Low BLNAR strains can have an ampicillin MIC at or around the breakpoint for this agent and disc diffusions tests or even MIC determinations may fail to identify such strains. The only definitive way of identifying such strains is by partial sequencing of the *ftsI gene*, which is not routinely undertaken by the majority of Reference laboratories.

Fourteen laboratories are using the EUCAST criteria whilst ten are still using clinical and laboratory standards institute (CLSI) guidelines. This makes the comparison of results difficult. It is recommended that all European Reference laboratories move to using EUCAST guidelines as soon as possible.

Two simulated CSF samples were included in the quality assurance panel to assess methods used for the nonculture detection of *Haemophilus influenzae*. The results submitted were very good, although with such a small number of samples it was not possible to evaluate whether participants were reporting results appropriate to the gene targets that they were using for their PCRs. Some gene targets are species-specific whereas others are designed for typing of strains of a particular species. Future EQA panels will be designed to examine this aspect of reporting in more detail.

Introduction

The European Centre for Disease Prevention and Control (ECDC) is a European Union (EU) agency with a mandate to operate dedicated surveillance networks (DSNs) and to identify, assess, and communicate current and emerging threats to human health from communicable diseases. Within its mission, ECDC shall 'foster the development of sufficient capacity within the Community for the diagnosis, detection, identification and characterisation of infectious agents which may threaten public health. The Centre shall maintain and extend such cooperation and support the implementation of quality assurance schemes.^{ir}

External quality assurance (EQA) is part of quality management systems and evaluates performance of laboratories, by an outside agency, on material that is supplied specifically for the purpose. ECDC's disease specific networks organise a series of EQA for EU/EEA countries. In some specific networks, non-EU/EEA countries are also involved in the EQA activities organised by ECDC, although at their own costs. The aim of the EQA is to identify needs for improvement in laboratory diagnostic capacities relevant to surveillance of disease listed in Decision No 2119/98/ECⁱⁱ and to ensure comparability of results in laboratories from all EU/EEA countries. The main purposes of external quality assurance schemes include:

- the assessment of the general standard of performance ('state of the art')
- the assessment of the effects of analytical procedures (method principle, instruments, reagents, calibration)
- the evaluation of individual laboratory performance
- the identification and justification of problem areas
- the provision of continuing education
- the identification of needs for training activities.

Haemophilus influenzae is a common cause of serious disease in children worldwide. Pneumonia and meningitis are the most frequent manifestations. However, it can also be responsible for epiglottitis, soft tissue, bone, joint and other body site infections. Invasive bacterial diseases are an important cause of morbidity and mortality in neonates and children worldwide. Highly safe and effective protein-polysaccharide conjugate Hib vaccines have been available for almost 20 years and have completely changed the epidemiology of invasive *H. influenzae* infections. Nevertheless, the availability of vaccines requires a more accurate surveillance system. Completeness and accuracy become key objectives of surveillance when vaccines are introduced and the incidence of the infection approaches low levels, as it is in invasive diseases due to *H. influenzae*. Not only epidemiological surveillance but also laboratory data, especially serotyping, are needed to ensure optimal European surveillance for *H. influenzae*.

The European Union Invasive Bacterial Infections Surveillance Network (EU-IBIS) was a successful dedicated surveillance network for the surveillance of invasive diseases caused by *Neisseria meningitidis* and *Haemophilus influenzae*. The network had epidemiological and laboratory components. The epidemiological activities focused on the collection and analysis of data on *N. meningitidis* and *H. influenzae* cases, and the evaluation of the impact that vaccination programmes using conjugate vaccines have on the epidemiology of meningococcal disease. The laboratory activities focused on EQA and were aimed at strengthening the laboratory capacity in Member States for accurately characterising the isolates of *N. meningitidis* and *H. influenzae*. EUIBIS was coordinated by the Public Health England (PHE) in London, United Kingdom from 1999-2006. Since October 2007, the coordination of the activities of EU-IBIS has been integrated into the activities of ECDC and the epidemiological and the laboratory data collected by the EU-IBIS network have been transferred to ECDC.

The implementation of laboratory surveillance activities, namely the External Quality Assurance (EQA) activities and training, has been outsourced to a consortium of European experts (the European Monitoring Group on Meningococci – EMGM – and some other experts in *H. influenzae* and *N. meningitidis*), coordinated by Prof Dr Matthias Frosch, from the University of Würzburg, Germany.

The specific objectives of this EQA exercise are:

- further harmonisation of molecular typing of *H. influenzae*
- further harmonisation of methods for antimicrobial susceptibility testing of *H. influenzae*
- training and dissemination of methods for the laboratory surveillance of invasive bacterial infections
- assisting the countries in capacity building, when required
- supporting ECDC in linking laboratory surveillance data and epidemiological data.

¹ Regulation (EC) No 851/2004 of the European Parliament and of the Council of 21 April 2004 establishing a European Centre for Disease Prevention and Control.

ⁱⁱ Decision No 2119/98/EC of the European Parliament and of the Council of 24 September 1998 setting up a network for the epidemiological surveillance and control of communicable diseases in the Community.

1 Material and methods

The objectives of this exercise were:

- To design an EQA scheme utilising a small panel of material containing viable *Haemophilus influenzae* isolates and non-viable simulated clinical samples for phenotypic and genotypic characterisation (where possible) to all EU Member States and candidate countries with suitable reference facilities.
- To improve the quality of data, assisting in the standardisation of techniques and thereby facilitating consistent epidemiological data for submission to the ECDC European Surveillance System database.

1.1 Study design

The design of the project allowed individual reference laboratories to test the material using their routinely available techniques in order to complete some or all of the requested criteria (Table 1) in the allocated time period.

An anonymous summary was produced showing the submitted results, the consensus by interpretation and the number of laboratories with each submitted result.

The EQA distribution used the availability of the large collection of *H. influenzae* isolates and expert knowledge of the Public Health England's (PHE) Haemophilus Reference Unit (HRU, Microbiology Services Division: Colindale, PHE. London, UK) together with the expert knowledge of Dr Vivienne James (UK NEQAS for Microbiology) and facilities in the External Quality Assurance Department (eQAD) PHE: Colindale, London. UK NEQAS for Microbiology undertake several International EQA schemes for other organisms that also require freeze-drying, distribution, results analysis and web-based reporting. The samples for the EQA scheme were selected by the PHE by agreement of the University of Würzburg, as coordinator of the IBD-labnet project.

The characterisations (test results) requested of the participating laboratories are shown in Table 1.

Procedure	Test	Tests requested			
	Bacterial isolates	Non-culture samples (simulated CSF)			
Phenotypic	Species				
Identification	Serotype				
	Biotype				
	Antimicrobial susceptibility testing				
	Beta-lactamase production				
Genotypic Identification	Species	Detection of H. influenzae			
	Capsule type				

Table 1. Tests requested from the participating laboratories

Participants were strongly encouraged to report their results via the internet into a specially designed web-based report form on the UK NEQAS websiteⁱ. Each laboratory was given a unique username and password for secure reporting of their results.

1.2 Participants

The list of participating laboratories can be found in Annex 1.

All participants were contacted prior to the EQA distribution to confirm the address and contact details for despatch of the potentially hazardous material. It was envisaged that the reference laboratories would wish to store the viable cultures and retain any unused material for their own quality processes. It was hoped that the distribution of the well-characterised material would become a resource within and between the reference laboratories.

ⁱUnited Kingdom National External Quality Assessment Service for Microbiology <u>www.ukneqasmicro.org.uk</u>

1.3 Timelines

The timelines for this EQA distribution are summarised in Table 2.

Table 2. Timelines for the EQA exercise

Event	Dates
Selection of EQA strains	March 2012
Assessment of material	April 2012
Transfer of material to eQAD NEQAS	April 2012
Pre-despatch checks (HRU and eQAD NEQAS)	April 2012
Distribution of EQAC panel UK NEQAS EQA Distribution 2802	8 May 2012
Deadline for receipt of results	22 June 2012
Analysis and collation of results	July–August 2012
Interim report to participants	September 2012
Individual results released on UKNEQAS website https:results.ukneqas.org.uk	September 2012
Interim report at EUROVAC meeting, Barcelona, Spain	November 2012
Summary report and recommendations	December 2012

1.4 The EQA panel material

The EQA panel comprised five viable bacterial isolates (to test participating laboratories' abilities to identify and characterise live cultures) plus two non-viable simulated CSF samples (to test their ability to detect *H. influenzae* in clinical specimens using non-culture detection methods).

1.4.1 Bacterial isolates

Four viable isolates of *H. influenzae* were selected for the panel. These were selected to be representative of the major disease-causing serotypes (Hib, Hif and non-capsulated *H. influenzae*), to include strains demonstrating both Beta-lactamase production and Beta-lactamase negative ampicillin resistance (BLNAR), and to demonstrate a range of MICs to other commonly used antimicrobials. The fifth isolate was a strain of *H. parainfluenzae*. This was included to test identification methods for *Haemophilus spp*. Further details on each strain are included in the Results section.

The isolates were selected and pre-screened by staff at the PHE's Haemophilus Reference Unit (HRU) and Antibiotic Resistance Monitoring and Reference Laboratory (ARMRL). They were then grown up, aliquoted, freezedried and distributed at ambient temperature by UK NEQAS for Microbiology. The samples were accompanied by instructions for their revival.

1.4.2 Non-culture simulated meningitis samples

The two simulated CSF (non-culture) samples for PCR were prepared from heat-killed suspensions of isolates obtained from the UK National Collection of Type Cultures (NCTC). One sample contained *Haemophilus influenzae* type b DNA. The other contained a non-capsulated strain of *Haemophilus influenzae* DNA. (This would allow laboratories capable of determining the capsular type of a strain to report this information.)

Suspensions of live bacterial cultures were prepared in PBS. Viable counts were performed and the cultures were killed by heating to 100°C for 10 minutes. They were then diluted to a concentration equivalent to 100cfu/ μ l in simulated CSF solution. The simulated CSF contained 6% sucrose and 1.1% bovine serum albumin. These simulated CSF samples were also distributed by UK NEQAS for Microbiology at ambient temperature, with instructions to handle them in the same way as clinical specimens.

2 Results

The strains were processed as requested and returned to NEQAS by 28 laboratories.

A summary of consensus results was released to participants via the UK NEQAS for Microbiology website in September 2012. A semi-automated analysis of results from all participants was subsequently generated by UK NEQAS for Microbiology and HRU. This was released to all participants via the UK NEQAS for Microbiology website in September 2012. Each participant received a customised report containing an analysis of their own results plus a summary of the overall results from all participants. An example of this report is included in Annex 3. The summary of overall results contained in Annex 3 is intended to complement the analysis of data in the following sections. The participation of each laboratory in the various parts of the EQA procedure is shown in Table 3. It must be noted that each laboratory did not necessarily submit a result for all samples for a given test. Hence, the total participants for a given test varies by sample (see Table 5).

A summary of the results of the EQA exercise was presented at the EUROVAC meeting which was held in Barcelona in November 2012.

Laboratory Identifier	Viable isolates								
	Phenotypic identification Genotypic identification								
	Species ID	Serotype	Biotype	Antimicrobial susceptibility	Beta- lactamase production	Species ID	Capsule type	<i>H. influenzae</i> detection	
NM02	+	+	+	+	+			+	
NM09	+	+	+		+		+		
NM10	+	+		+	+	+	+	+	
NM16	+	+	+	+	+	+	+	+	
NM17	+	+	+	+	+	+	+	+	
NM20A	+	+	+	+	+	+	+	+	
NM23	+	+		+	+	+	+	+	
NM26	+	+	+	+	+	+	+	+	
NM27	+	+	+	+	+	+	+	+	
NM29	+	+	+	+		+	+		
NM32A	+	+	+	+	+	+	+	+	
NM33A	+	+			+	+	+		
NM34A	+	+	+	+	+	+	+	+	
NM35A	+	+	+		+				
NM36	+	+		+	+				
NM37A	+			+	+	+	+	+	
NM39	+	+	+	+	+	+	+	+	
NM40	+	+		+	+				
NM41	+		+	+	+	+	+	+	
NM47	+	+	+	+	+	+	+	+	
NM48	+	+	+	+	+	+	+	+	
NM51	+	+	+		+				
NM52	+	+		+	+				
NM53	+	+	+	+	+	+	+	+	
NM54	+	+		+	+				
NM55	+	+	+	+	+	+	+	+	
NM57	+	+	+	+	+		+	+	
NM59	+	+	+	+	+			+	
Total	29	26	20	24	27	18	20	19	

Table 3. Summary of tests for which each laboratory submitted results

^a Each laboratory did not necessarily submit a result for all samples for a given test.

2.1 Part 1. Characterisation of viable isolates

The intended results for Part 1 of the analysis are shown in Table 4. In the case of the genotypic species determination of sample 1389, two results (*'H. parainfluenzae'* or 'Not *H. influenzae'*) were deemed acceptable, since some laboratories employ genotypic species determination simply to decide whether or not an isolate is *H. influenzae*.

All participants confirmed that the five bacterial isolates were viable following the revival procedure. Not all methods (tests) were performed on the isolates by all laboratories. A summary of the number of laboratories reporting results for each sample by method is shown in Table 5.

Table 5 shows the proportion of laboratories who successfully reported the intended result for each test. It also lists the results that did not match the intended result. In some cases these were incorrect results (e.g. phenotypic species identification of sample 1389 and incorrect serotype for phenotypic serotyping results). In the case of sample 1389 (*H. parainfluenzae* isolate), the phenotypic serotyping and genotypic capsule typing tests were not appropriate. In the case of biotyping of sample 1389, the web reporting form did not explicitly ask the participants to select whether they had interpreted their results according to the scoring system for *H. influenzae* or *H. parainfluenzae* (shown in Table 8). The correct biochemical results would be interpreted as biotype II according to the *H. parainfluenzae* scheme, but biotype IV if erroneously scored according to the *H. influenzae* scheme.

The percentage of participants reporting the intended result for each test is also shown in Figures 1 to 5. In all tests for Part 1 of the study, the consensus of the submitted results matched the intended result. The percentage match varied between 74% and 100%. A detailed description of the results broken down by test is given below.

Table 4. Intended results for Part 1: Characterisation of viable isolates

EQA sample	Phenotypic species ID	Phenotypic serotype	Biotype	Genotypic species ID	Genotypic capsule type
1386	H. influenzae	NTHi	Ι	H. influenzae	Hib-
1387	H. influenzae	NTHi	II	H. influenzae	NTHi
1388	H. influenzae	Hib	I	H. influenzae	Hib
1389	H. parainfluenzae	NA	IIa	<i>H. parainfluenzae^b or not H. influenzae</i>	NA
1390	H. influenzae	Hif	Ι	H. influenzae	Hif

Abbreviations: ID, identification; NTHi, non-capsulated (non-typable) Haemophilus influenzae; Hib, H. influenzae type b; Hibcapsule-deficient H. influenzae type b; Hif, H. influenzae type f; NA, not applicable.

^aBiotype II according to the H. parainfluenzae scheme. If scored according to the H. influenzae biotyping scheme, the erroneous result of IV would be generated.

^bBecause many laboratories perform genotypic testing to determine only whether an isolate is H. influenzae or not, a result of 'Not H. influenzae' was deemed acceptable for this test.

Table 5. Results for Part 1: Characterisation of viable isolates

Sample number	Intended result	Proportion of labs reporting the	Results not matching intended result		
		intended result (%)	(frequency)		
Phenotypic species	identification				
1386	H. influenzae	28/28 (100%)	NA		
1387	H. influenzae	28/28 (100%)	NA		
1388	H. influenzae	28/28 (100%)	NA		
1389	H.parainfluenzae	26/28 (93%)	<i>H. influenzae</i> (1) Not <i>H. influenzae</i> (1) ^a		
1390	H. influenzae	28/28 (100%)	NA		
Phenotypic serotyp	bing	· · · · · · · · · · · · · · · · · · ·	·		
1386	NTHi	19/26 (73%)	Hib (5) Hid (1) Non-specific agglutination (1)		
1387	NTHI	23/24 (96%)	Hia (1)		
1388	Hib	25/26 (96%)	Hie (1)		
1389	NA ^b	14/17 (82%)	NTHi (3)		
1390	Hif	23/24 (96%)	NTHi (1)		
Biotyping					
1386	I	19/20 (95%)	II (1)		
1387	II	15/20 (75%)	I (4) IV (1)		
1388	Ι	19/20 (95%)	II (1)		
1389	II ^c	15/16 (94%)	IV (1) ^c		
1390	Ι	19/20 (95%)	IV (1)		
Genotypic species i	dentification	· · · · · · · · · · · · · · · · · · ·	·		
1386	H. influenzae	15/15 (100%)	NA		
1387	H. influenzae	15/15 (100%)	NA		
1388	H. influenzae	15/15 (100%)	NA		
1389	389 <i>H. parainfluenzae</i> 12/13 (92%): <i>H. parainfluenzae</i> (5) <i>H. influenzae</i> (1 Not <i>H. influenzae</i> (7)		H. influenzae (1)		
1390	H. influenzae	15/15 (100%)	NA		
Genotypic capsular	typing				
1386	Hib-	15/19 (79%)	Hib (1) NTHi (3)		
1387	NTHi	18/19 (95%)	Hib- (1)		
1388	Hib	18/19 (95%)	NTHi (1)		
1389	NA ^d	11/12 (92%)	Hib- (1)		
1390	Hif	18/19 (95%)	Hif- (1)		

Abbreviations: NTHi, non-typable Haemophilus influenzae; Hib, H influenzae type b; Hib- capsule-deficient strain of H. influenzae type b Hif, H. influenzae type f; NA, not applicable.

^a One laboratory did not attempt to fully identify non-H. nfluenzae strains.

^b Phenotypic serotyping with H. influenzae antisera is not appropriate for strains of H.parainfluenzae.

^c The correct biochemical results would be interpreted as biotype II according to the H. parainfluenzae scheme. If scored according to the H. influenzae biotyping scheme, the erroneous result of IV would be generated. Because raw data was not available, the result of II has been interpreted as a correct laboratory result interpreted according to the H. parainfluenzae biotyping scheme.

^d H. influenzae specific genotypic capsular typing is not appropriate for strains of H.parainfluenzae.

Figure 3. Biotype identification

2.1.1 Phenotypic species identification

Samples 1386,1387,1388,1390 were correctly identified as *H. influenzae* by all participants. Sample 1389 was correctly identified as *H. parainfluenzae* by 26 laboratories. One laboratory mis-identified the strain as *H. influenzae* (but stated that they used X and V factors in their phenotypic identification) and one laboratory stated that it was 'not *H. influenzae*' which is a correct statement, though not a full speciation.

The identification methods used by the participants are shown in table 6.

Table 6	Phenotypic species identification methods reported by participating laboratories
	Phenotynic identification method

				Pho	enotypic ic	lentificati	on metho	d		
Lab ID	Gram stain	X,V factors	Biochemical profile	API NH	RapID NH	Oxidase	Catalase	Satellitism	Porphyrin test	Other
NM02	Y					Y	Y	Y	Y	MALDI-TOF
NM09	Y					Y	Y		Y	
NM10		Y			Y					
NM16	Y	Y	Y	Y					Y	
NM17						Y		Y	Y	
NM20A	Y		Y					Y	Y	
NM26		Y		Y						Vitek
NM27	Y	Y			Y			Y		Other (not specified)
NM29	Y	Y		Y		Y		Y		
NM32A	Y			Y		Y	Y			
NM33A		Y			Y			Y	Y	
NM34A		Y		Y						
NM35A		Y	Y							
NM36	Y	Y				Y		Y		Other (not specified)
NM37A									Y	
NM39				Y						
NM40		Y			Y					
NM41		Y			Y	Y	Y	Y		
NM47				Y						MALDI-TOF
NM48	Y	Y		Y						Vitek
NM51		Y			Y			Y		
NM53		Y								MALDI-TOF
NM54	Y							Y		Vitek
NM 55	Y	Y		Y				Y		Vitek
NM57		Y								MALDI-TOF
NM59	Y	Y	Y			Y		Y		

Note: The web reporting form asked participants to select five methods from predefined menus and then add further methods to a comments field.

2.1.2 Phenotypic serotyping

The number of laboratories reporting serotype varied between 19 and 26, according to the different samples. Twenty one laboratories used slide agglutination, four used latex agglutination and four used co-agglutination (some laboratories used more than one method). The results indicated that two laboratories are experiencing some problems with conventional serotyping. A breakdown by method revealed that the discrepant results were confined to slide agglutination (see Annex 3). Neither of the two laboratories having problems with conventional serotyping reported PCR-based typing of isolates.

One laboratory reported non-specific agglutination with strain number 1386. Problems encountered with conventional phenotypic serotyping, including non-specific agglutination, cross-reactions can be resolved by using a PCR-based method of capsular genotyping (see below) [1].

As described above, H. influenzae serotyping is not appropriate for sample 1389 (H. parainfluenzae).

2.1.3 Biotyping

Twenty one laboratories carried out biotyping on the strains, using a mixture of individual biochemical tests, the API NH kit and the RapID NH kit (Table 7). The results were generally very good (Table 5).

Incorrect results did not appear to be linked to a particular method or one of the three biochemical reactions (see Annex 3). Apart from the occasional discrepancy, four laboratories reported strain number 1387 as biotype I, whereas it was in fact biotype II. These two biotypes vary in their reaction to ornithine decarboxylase (Table 8). Three of these laboratories used RapID NH for biotyping and the fourth used API NH.

Sixteen laboratories reported a biotype result for strain 1389 (the *H. parainfluenzae* isolate). The consensus result was biotype II, but one laboratory identified the strain as biotype IV. There is a scheme for biotyping *H. parainfluenzae* isolates that uses the same biochemical reactions, but a different scoring system to the *H. influenzae* scheme (Table 8). As mentioned above (section 2.1), it was assumed that participants reporting biotype II had scored the correct biochemical results according to the *H. parainfluenzae* system and the laboratory reporting biotype IV had applied the *H. influenzae* system.

Table 7. Summary of biotyping methods used by 21 participating laboratories

Method	Number of laboratories
Individual biochemical tests	8
Individual biochemical tests + API NH kit	1
API NH kit	8
RapID NH kit	4

Table 8. Biotyping scheme for Haemophilus influenzae and Haemophilus parainfluenzae (Kilian 1976)

a) Biotypes of Haemophilus influenzae

Biotype	Indole	Urea	Ornithine decarboxylase
Ι	+	+	+
II	+	+	-
III	-	+	-
IV	-	+	+
V	+	-	+
VI	-	-	+
VII	+	-	-
VIII	-	-	-

b) Biotypes of Haemophilus parainfluenzae

Biotype	Indole	Urea	Ornithine decarboxylase
Ι	-	-	+
II	-	+	+
III	-	+	-
IV	+	+	+
V	-	-	-
VI	+	-	+
VII	+	+	-
VIII	+	-	-

2.1.4 Genotypic species identification

Fifteen laboratories used a PCR-based method to identify the strains (Table 9). This comprised either a PCR to detect *H. influenzae*-specific sequences in genes such as *ompP2*, *ompP6*, or the 16S rRNA gene. With only one exception, all of these methods produced the intended result (Table 4). In the case of sample 1389, a result of 'Not *H. influenzae*' or '*H. parainfluenzae*' was accepted as correct in order to accommodate participants who used a method that could simply confirm whether the target was *H. influenzae* or not.

In the single case that did not match the intended result, sample 1389 (*H. parainfluenzae*) was designated '*H. influenzae*' using a PCR to detect *H. influenzae* specific sequences in the *ompP2* gene. As raw data is not available, the reason for this discrepancy is not known.

The 15 laboratories used a range of DNA extraction procedures, all of which were associated with good results (Table 9).

 Table 9. Number or participants using various combinations of DNA extraction procedure and

 detection method for genotypic species identification, other genetic typing and capsular typing on

 viable isolates

		Species identification				c typing	Capsular typing	
DNA extraction procedure	ompP2 PCR	<i>ompP6</i> PCR	16S gene PCR	Other PCR (unspecified)	BLNAR detection	MLST	Variation of Falla <i>et al</i> (1994)	
Manual procedure + commercial kit	5				1		6ª	
Automated procedure + commercial kit	1	1	1	1		1	3	
Manual procedure + in- house method	4	1			1	3	9	
Other (unspecified)	1				1		2 ^b	
Total	11	2	1	1	3	4	19	

^aIncludes one laboratory that didn't state that they performed capsule typing, but submitted genetic capsule typing results.

^bIncludes one laboratory that didn't submit any information on their genotypic ID or serotyping methods, but submitted genetic capsule typing results.

2.1.5 Genotypic capsule typing

Nineteen laboratories performed a PCR-based capsular capsule typing procedure on the strains. Their DNA extraction procedures are also shown in Table 9. All of the participants used a PCR method based on that of Falla *et al* [1].

The majority of the submitted results matched the intended result, with only a few exceptions (Table 4). Three laboratories identified the Hib- strain as a NTHi. It was not clear whether this was merely a misunderstanding of the convention of reporting Hib- strains in this study or an artefact of the hierarchy of testing performed in their laboratories (none of them provided extra information to suggest they detected the Hib-specific PCR target). A fourth laboratory identified the Hib- strain as Hib (by both serotyping and genetic capsule typing). The reason for this is not clear. Capsule production in *H. influenzae* depends on a cluster of genes in the 18Kb *cap* locus. The *bexA* gene within the *cap* locus is essential for the export of capsular polysaccharide to the cell surface. The majority of Hib strains contain a tandem repeat of the *capb* locus with one complete copy of *bexA* and one truncated copy of *bexA*. Capsule-deficient mutants of type b strains (Hib-) have a single copy of the *bexA* locus possessing a deletion in the *bexA* gene and these strains are unable to export capsular polysaccharide to the cell surface. Such strains will often appear non-capsulated (NTHi) by conventional phenotypic serotyping. One laboratory identified strain 1390 as Hif- (capsule-deficient strain of Hif).

It is recommended that a PCR-based procedure for the confirmation, identification and capsular typing of H. influenzae should include methods for the detection of three genes: a universally carried gene (e.g. *ompP2)*, which confirms the strain as *H. influenzae*, the Van Ketel gene' *(bexA)* which detects the strain's ability to export the capsule to the cell surface [2] and a capsular type-specific gene (for types a-f) which confirms the strain's capsular serotype [1].

One laboratory reported strain 1389 (a strain of *H.parainfluenzae*) as a Hib- strain (due to a weak positive in the Hib specific PCR). All of the other laboratories either reported this sample as `not evaluated or` 'not applicable'.

2.1.6 Other molecular typing

Although not a requirement of the EQA study, four laboratories submitted multilocus sequence typing (MLST) results for the strains [3]. The results were all in agreement (Table 10).

Table 10. Multilocus sequence types (ST) of samples 1386 to 1390

Sample number	ST
1386	6
1387	14
1388	6
1389	NA
1390	124

NA: not applicable

2.2 Part 2. Antimicrobial susceptibility testing

2.2.1 Beta-lactamase activity testing

Twenty seven laboratories reported Beta-lactamase activity results. All of the results were correct for all strains.

2.2.2 Antimicrobial susceptibility testing

The intended results for the antimicrobial susceptibility testing are shown in Table 11. Detailed analysis of results from participants is given in Annex 3.

The antimicrobial susceptibility testing proved somewhat problematic. Up to twenty four laboratories reported the results of antimicrobial susceptibility testing. Fourteen laboratories used EUCAST guidelines and 10 used CLSI guidelines. Some laboratories reported zone sizes and their interpretation and others reported MIC values. The use of different methodologies, different disc strengths and different breakpoints makes it difficult to compare the results from laboratories.

Tuble 11. Intended results for antimicrobial susceptibility testing of							
Sample number	Beta-lactamase activity	Antimicrobial susceptibility (S)/ resistance (R)					
1386	Absent	All S					
1387	Absent	AMP R, CO-AM S, BLNAR					
1388	Present	AMP R, CHLOR R, TET R, CO-AM S , CTX S, CTR S					
1389	Absent	All S					
1390	Absent	All S					

Table 11. Intended results for antimicrobial susceptibility testing of bacterial isolates

Abbreviations: AMP, ampicillin; CHLOR, chloramphenicol; TET; tetracycline; CO-AM, co-amoxiclav; CTX, cefotaxime, CTR, ceftriaxone, BLNAR, Beta-lactamase- negative ampicillin-resistant.

In general there were few problems with the antimicrobial susceptibility testing of the strains that were susceptible to a wide range of antibiotics (samples 1386, 1389, 1390 see Table 12).

Antimicrobial	Specimen 1386									
agent:	MIC range (n)	MIC (µg/ml) mode	Consensus interpretation	Ratio reporting consensus	Non consensus results (n)					
Ampicillin	0.032-0.5	0.125	S	18/18						
Co-amoxyclav	0.125-0.5	0.25	S	17/17						
Beta-lactamase			negative	27/27						
Chloramphenicol	0.094-1	0.5	S	18/18						
Ciprofloxacin	<0.002-0.01	0.004	S	22/22						
Ceftriaxone	<0.002-0.003	<0.016	S	18/18						
Cefotaxime	<0.016-0.38	<0.016	S	20/20						
	Specimen 1387									
Ampicillin	1.5-8	2	R	14/23	S (3), I (6)					
Co-amoxyclav	1.5-12	4	S	11/17	R (6)					
Beta-lactamase			negative	26/26						
Chloramphenicol	0.38-2	1	S	18/18						
Ciprofloxacin	<0.03-0.064	0.016	S	21/21						
Ceftriaxone	0.023-0.5	0.032	S	19/19						
Cefotaxime	0.047-8	0.094	S	19/19						
cerotaxime	a i 4000			,						
Ampicillin	Specimen 1388 2- >256		R	23/23						
Co-amoxyclav			S	17/17						
Beta-lactamase			positive	28/28						
Chloramphenicol	3-32	16	R	17/17						
•	0.004-0.016	0.008	S	22/22						
Ciprofloxacin	<0.003-<0.25	<0.016	S	19/19						
Ceftriaxone	<0.005 <0.25	<0.010	S	20/20						
Cefotaxime	<0.010- 0.5		3	20/20						
	Specimen 1389	0.25		21/22	D (1)					
Ampicillin	<0.015-1	0.25	S	21/22	R (1)					
Co-amoxyclav	0.023-1	0.5	S	15/16	R (1)					
Beta-lactamase			negative	25/25						
Chloramphenicol	0.25-1	0.75	S	18/18						
Ciprofloxacin	0.002-0.25	0.016	S	21/21						
Ceftriaxone	0.004-0.25	<0.016	S	17/17						
Cefotaxime	<0.002-0.5	<0.016	S	19/19						
	Specimen 1390									
Ampicillin	0.19-1	0.25	S	22/23	R (1)					
Co-amoxyclav	0.25-1	1	S	16/16						
Beta-lactamase			negative	25/26	Positive (1)					
Chloramphenicol	0.38-1.5	1	S	17/18	R (1)					
Ciprofloxacin	0.01-0.032	0.016	S	22/22						
Ceftriaxone	0.006-0.25	0.008	S	18/18						
Cefotaxime	<0.16-0.75	0.023	S	20/20						

Table 12. Antimicrobial susceptibility testing results submitted by participating laboratories

Abbreviations: S, sensitive; R, resistant; I, intermediate resistance.

There were also few problems with the testing for sample 1388, which exhibited Beta-lactamase-mediated resistance to ampicillin and amoxicillin (see Table12). Generally the most important mechanism of ampicillin resistance in *H. influenzae* is the production of TEM-1 Beta-lactamase [4]. A second Beta-lactamase, ROB-1 [5] is less frequently implicated. A significant increase in Beta-lactamase-negative ampicillin resistance in *H. influenzae* has been reported in Sweden and Norway [6]. Strain 1388 also exhibited chloramphenicol and tetracycline resistance, both of which were detected by the participants who tested for these agents. The most common mechanism of chloramphenicol resistance in *H. influenzae* is plasmid-mediated production of chloramphenicol acetyl transferase (CAT) encoded by the cat gene [7]. The cat gene is carried on conjugative plasmids ranging in size from 34×10^6 to 46×10^6 . Genes encoding resistance to tetracycline and ampicillin are frequently carried on these plasmids as well, which can be incorporated into the bacterial chromosome [8]. Less commonly, strains are resistant to chloramphenicol due to the loss of an outer membrane protein, which results in a permeability barrier [9].

One of the samples, 1387 was Beta-lactamase negative, but showed reduced susceptibility to ampicillin, amoxicillin and co-amoxyclay. Haemophilus influenzae may be resistant to aminopenicillins through the production of a plasmid-mediated Beta-lactamase or from alterations in penicillin-binding proteins (PBP) [10], leading to a reduced affinity to penicillins and cephalosporins. Haemophilus influenzae has five penicillin binding proteins (1A, 1B, 2, 3 and 4). PBP 3 is encoded by the ftsI gene and mutations in the transpeptidase domain of ftsI are correlated with resistance [11, 12]. Strains which are ampicillin-resistant because of alterations in PBP3 are termed BLNAR strains. Some BLNAR strains (High-BLNAR) have ampicillin MICs in the range 8-16 µg/ml. Such strains can be readily detected by conventional disc diffusion methods, but are rarely encountered in Europe, though they are increasingly observed in the Far East. High BLNAR strains have mutations in the acr gene, which encodes the AcrAB efflux pump, in addition to mutations in ftsI [13]. Low-BLNAR strains usually have ampicillin MICs in the range 0.5 to 2µg/ml and such strains may be difficult to identify by conventional susceptibility testing even when low-strength ampicillin (2 µg/ml) and co-amoxyclav (2+1µg/l) discs are used. Definitive identification of such strains relies on PCR and partial sequencing of the ftsI gene, but this is impractical as a routine test. The Nordic countries have agreed on the use of a screening test for detection of such strains (see Figure 6 below). The clinical significance of ampicillin resistance at this low level is, however, far from clear. However, if a strain is found to be a low-level BLNAR, it would be prudent to avoid the use of these antimicrobials to treat a serious invasive infection.

Sample 1387 was a low BLNAR strain. MICs for sample 1387 ranged between 1.5-8µg/ml for ampicillin and 1.5-12µq/ml for co-amoxyclav, and this strain was scored as resistant to ampicillin by 14/23 participants (60%), but 11/17 participants (65%) scored it as susceptible to co-amoxiclay. These results serve to highlight the different interpretations provided by the EUCAST and CLSI guidelines. According to EUCAST guidelines the breakpoint for ampicillin is 1µg/ml and for co-amoxyclav 2 µg/ml. The interpretative standards for CLSI state that strains with an ampicillin MIC of $\leq 1 \mu g/ml$ should be regarded as susceptible, those with an MIC of $\geq 4 \mu g/ml$ are resistant and an MIC of 2 µg/ml indicates intermediate susceptibility. For co-amoxyclav, CLSI guidelines specify strains with an MIC of \leq f LSI guidare susceptible and those with an MIC of \geq 8/4 µg/ml are resistant. All 11 laboratories using EUCAST guidelines reported the sample as ampicillin resistant and 4/7 laboratories using EUCAST guidelines reported the sample as co-amoxyclav-resistant. The three laboratories using EUCAST guidelines that reported this strain as susceptible recorded MICs of 1.5 µg/ml, 2 µg/ml and 2 µg/ml which are all at or near to the breakpoint. Two of the seven laboratories using CLSI guidelines reported the sample as being ampicillin-resistant and five reported it as being of intermediate susceptibility. For co-amoxyclav, six laboratories gave results according to CLSI guidelines two stated that the strain was resistant and four found it to be susceptible. It should be noted that CLSI recommends: 'BLNAR strains should be considered resistant to co-amoxyclav despite apparent in vitro susceptibility of some BLNAR strains'. Using EUCAST guidelines will reduce the problem of interpretation of the susceptibility of low BLNAR strains. A comparison of EUCAST and CLSI interpretative standards for MIC determination of a number of antimicrobial agents is shown in table 13.

Antimicrobial agent	EUCAST MIC breakpoint (µg/ml) ¹		CLSI MIC Interpretative standard (µg/ml)		
	S≤	R>	S≤	I	R≥
Ampicillin	≤ 1	> 1	≤ 1	2	≥ 4
Co-amoxyclav	≤ 2	> 2	≤ 4/2		≥ 8/4
Ceftriaxone	≤ 0.12	> 2	≤ 2		
Cefotaxime	≤ 0.12	.> 0.12	≤ 2		
Ciprofloxacin	≤ 0.5	> 0.5	≤ 1		
Chloramphenicol	≤ 2	> 2	≤ 2	4	≥ 8

Table 13. Comparison of interpretative standards for MIC determinations (μ g/ml) with H. influenzae in EUCAST and CLSI guidelines

¹ In order to simplify the EUCAST tables, the intermediate category is not listed. It is readily interpreted as the values between the S and the R breakpoint. For example, for MIC breakpoints listed as $S \le 1 \text{ mg/L}$ and R > 8 mg/L, the intermediate category is 2-8 (technically >1-8) mg/L, and for zone diameter breakpoints listed as $S \ge 22 \text{ mm}$ and R < 18 mm, the intermediate category is 18-21 mm.

Information on the BLNAR status of the samples was not explicitly elicited from the participants. However, three laboratories stated that they used a molecular technique to detect BLNAR strains.

Some strains of H. influenzae are resistant to aminopenicillins through both mechanisms, that is, they produce a Beta-lactamase and have altered PBP3. Such strains are termed Beta-lactamase positive amoxicillin-clavulanate positive (BLPACR) strains. Such a strain was not included in the EQA panel.

2.3 Part 3. Non-culture detection of *H. influenzae*

Two simulated CSF samples (1391 and 1392) were included in the EQA panel to test participants' ability to extract DNA from the clinical samples and assay for the presence of *H. influenzae* DNA. They were also encouraged to offer any further information that their assay was capable of elucidating about the samples. Sample 1391 contained $100cfu/\mu l$ of a heat-killed suspension of a non-typable strain of *H. influenzae* in simulated CSF. Sample 1392 contained $100cfu/\mu l$ of a heat-killed suspension of a strain of *H. influenzae* serotype b. The intended results and breakdown of submitted data are shown in Table 14.

Seventeen of 18 participants correctly detected *H. influenzae* DNA in sample 1391. The remaining laboratory stated that it was 'not *H. influenzae*' using *ompP2* PCR and gel electrophoresis. Several laboratories characterised the sample further by performing additional PCRs against the *bexA* or serotype-specific targets: one stated that it was 'non-typable' (no details); another that it was *bexA* and Hib negative; and another that it was negative for *bexA* plus the Hia, Hib, Hie and Hif-specific targets. However, one laboratory erroneously stated that the sample was bexA positive. (This did not appear to be a transposition of the two samples, because they correctly detected *bexA* in sample 1392, too.)

Seventeen of 18 laboratories also correctly detected H. influenzae DNA in sample 1392. The remaining laboratory erroneously stated that it was 'not *Haemophilus influenzae*' using a real-time PCR against *ompP6*. Hence, different laboratories and PCR methods failed to detect the *H. influenzae* DNA in the two non-culture samples. Some laboratories characterised the sample further by including additional PCR targets: one stated that the sample was Hib (no details); two that it was *bexA*-positive; and two that it was positive for *bexA* and a Hib-specific target. One participant erroneously stated that the sample was non-typable (no details).

The 18 laboratories used a variety of methods for DNA extraction and *H. influenzae*-specific gene target detection (Table 15), all of which gave good results with these two samples.

Table 14. Intended and submitted results for Part 3: Non-culture detection of H. influenzae

Sample Number	Intended results	Ratio of labs reporting the intended result (%)	Results not matching intended result (frequency)						
1391	<i>H. influenzae</i> (optional further information = non-typable)	17 ^{a,b} /18 (94%)	Not <i>H. influenzae</i> . (1)						
1392	<i>H. influenzae</i> (optional further information = serotype b)	17/18 ^b (94%)	Not <i>H. influenzae</i> (1)						

^a Includes one laboratory that didn't select 'H. influenzae', but reported 'Other – not Hib' after using a method of 16S rDNA PCR and gel electrophoresis. It is assumed that they did correctly identify H. influenzae, but carried out additional PCR(s).

^b See main text for results on additional characterisation.

Table 15. Methods used for preparation and detection of H. influenzae DNA in simulated CSF samples

DNA extraction	Amplification		H. in	<i>fluenzae</i> g	jene target	a
		16S rDNA	ompP2	ompP6	fucK	Other (not specified)
Manual procedure +	PCR and sequencing	3				
commercial kit	PCR and gel electrophoresis	1	3			2
	Real-time PCR platform		2	1	1	
Automated procedure +	PCR and sequencing					
commercial kit	PCR and gel electrophoresis					
	Real-time PCR platform	1	2	1		
Manual procedure + in-	PCR and sequencing					
house method	PCR and gel electrophoresis					1
	Real-time PCR platform					

Overall comments

The laboratory EQA has shown that the European Haemophilus Reference Laboratories vary in the level to which they characterise strains referred to them, ranging from simple speciation to full identification. Similarly, some laboratories perform PCR-based capsular based genotyping and antimicrobial susceptibility testing whilst others do not.

This EQA distribution identified some problems with the use of conventional serotyping by slide agglutination. The results can be misinterpreted when there are problems such as non-specific agglutination, cross-reactions and auto-agglutination. Satola *et al* [14] found that *H. influenzae* isolates were misidentified by conventional *H. influenzae* serotyping in 17.5% of cases. Discrepancies varied by serotype and usually resulted in over-reporting of genotypically non-capsulated strains of *H. influenzae* as encapsulated strains. The results of this EQA exercise clearly indicate that PCR-based capsular genotyping gives more reliable results for the capsular typing of strains of *H. influenzae* than the results obtained by conventional serotyping methods.

The antimicrobial susceptibility testing results proved difficult to assess as some laboratories gave MIC values, whilst others gave zone sizes with or without interpretation of the results. Some laboratories are using EUCAST guidelines whilst others are still using CLSI guidelines. There are major differences between the EUCAST and CLSI both in terms of media, and defines breakpoints for a number of antimicrobials. All EU reference laboratories should be moving towards using EUCAST guidelines.

There were no problems with the detection of Beta-lactamase production. However the evaluation of BLNAR proved more difficult.

There is some evidence that the prevalence of ampicillin-resistance of *H influenzae* in Europe may be decreasing due to a reduction in the number of Beta-lactamase positive ampicillin-resistant strains, whereas the prevalence of BLNAR strains is relatively stable [15]. The level of ampicillin resistance exhibited by BLNAR strains may be low (MIC 0.5-2 μ g/ml) and this may make their detection difficult, particularly if a breakpoint of 1 μ g/ml is used to define ampicillin susceptibility.

Using PCR and sequencing to detect specific mutations in the *ftsI* gene and associated PBP 3 substitutions, strains can be categorised as BLNAR. Low BLNAR usually have ampicillin MICs in the range 0.5 to 2.0 μ g/ml, and high BLNAR have ampicillin MICs in the range 1.0 to 16.0 μ g/ml. García-Cobos *et al* (2008) suggest that low BLNAR strains are best detected by broth dilution methods rather than disc susceptibility testing .

BLNAR strains show reduced susceptibility not only to ampicillin but also to other Beta-lactam antibiotics, particularly some of the cephalosporins. Livermore et al [16] suggested that cefaclor resistance is a better indicator of a BLNAR strain than ampicillin resistance and James et al [17] used cefuroxime resistance (MIC > 4.0 μ g/ml) to screen for BLNAR strains. CLSI recommends that BLNAR strains are considered resistant to amoxicillin-clavulanate, cefaclor and cefuroxime despite apparent susceptibility of some strains to these antimicrobials.

Nørskov-Lauritsen *et al* [18] evaluated the efficacy of disk diffusion methods for the detection of low-BLNAR. Forty seven low-BLNAR strains of *H. influenzae*, identified by partial sequencing of the *ftsI* gene had low-level resistance to ampicillin (MIC ≤ 1 mg/l; MIC₅₀ = 0.5 mg/l) which would be interpreted as susceptible by both EUCAST and CLSI interpretative criteria. The MIC of cefuroxime varied between 1 and 4 mg/l (MIC₅₀ = 2 mg/l) which would be interpreted as resistant by EUCAST but susceptible by CLSI criteria. These authors found that disk diffusion with cefaclor (30µg disks) on sensitivity test agar + 5% horse blood + NAD was able to discriminate low-BLNAR strains from wild-type strains with 98% sensitivity and 86–99% specificity.

Some laboratories used low strength ampicillin disks (2µg) as recommended by EUCAST guidelines, whilst others used higher concentration ampicillin disks (10µg). The use of low dose ampicillin disks is recommended as it will increase the ability to identify low-BLNAR [18, 19]. The screening method outlined by Nordic AST (as described below) should improve the ability of laboratories to detect low level BLNAR and BLPACR.

The method for screening for BLNAR and BLPACR strains recommended by the Nordic Committee on Antimicrobial Susceptibility Testing (NordicAST, 2012) is shown in Figure 6.

In this procedure the strain of *H. influenzae* is plated onto Mueller-Hinton agar supplemented with 5% defibrinated horse blood and 20 mg/L Beta-NAD. A 1u penicillin disc is placed on the surface of the plate and the culture is incubated overnight. If the zone of inhibition around the penicillin disc is \geq 12mm the strain can be assumed to be susceptible to ampicillin, amoxicillin, cefuroxime, ceftriaxone and carbapenems. If the zone of inhibition is < 12 mm a Beta-lactamase test should be performed. If the strain is Beta-lactamase negative the strain is a BLNAR and can be assumed to be resistant to cefuroxime. MIC determinations should be carried out to establish susceptibility to other Beta-lactamas

If the strain is Beta-lactamase positive the strain is a BLPAR strain. The strain should then be tested with a 30µg cefaclor disc. If the zone of inhibition around the cefaclor disc <23mm, the strain is both Beta-lactamase positive and intrinsically resistant to ampicillin (BLPACR). BLPACR strains can be assumed to be resistant to cefuroxime. MIC determinations should be carried out to determine the susceptibility of BLPACR strain to amoxicillin-clavulanate, ceftriaxone and carbapenems.

Figure 6. Disc diffusion screening method for the detection of BLNAR and BLPACR strains of *H. influenzae*

AMP = ampicillin, AMOX = amoxicillin, CO-AM = amoxicillin-clavulanate, CXM = cefuroxime, CTR = ceftriaxone

Two simulated CSF samples were included in this EQA panel to assess laboratories' methods and expertise in nonculture detection of *H. influenzae*. The first sample was a non-typable *H. influenzae* (which may not be detected in some PCRs; see below), the second a Hib. The results were generally very good. Only one laboratory failed to detect *H. influenzae* in each sample. In the first sample, the detection method was *ompP2* PCR with gel electrophoresis; in the second it was a real-time PCR against the *ompP6* target. The reason for these false negatives is not known, but could have been a primer sequence mismatch in the isolate, or a technical failure during DNA extraction or PCR. It is unlikely to be an inherent problem with these PCR targets; although the details of each PCR were not requested from participants, other PCRs targeting *ompP2* and *ompP6* were successful.

A number of participants performed further PCRs (*bexA* and capsule type-specific PCRs) and correctly identified whether the bacterial sample was capsulated or, indeed, a Hib. This is a useful tool for surveillance purposes and we would encourage its use.

The 15 of 18 participants that provided the information appeared to be using PCRs directed at gene targets present in all (or almost all) *H. influenzae* isolates, regardless of serotype (16S rDNA, *ompP2, ompP6, fuck*) as their primary PCR target. This is a great improvement on last year's EQA, in which some laboratories used PCRs directed against the *bexA* gene. The *bexA* target is either restricted to solely capsulated isolates or Hib and Hic isolates only (e.g. Corless *et al* 2001) and is not recommended as the sole PCR target in non-culture detection as it will not detect the increasing number of non-typable isolates causing disease (e.g. one of the samples in this EQA). Care must be taken in reporting PCR-derived results on clinical specimens if the PCR target is not universally present (e.g. bexA), and the precise meaning of a positive or negative PCR result must be explained (e.g. whether the test can only detect capsulated *H. influenzae* or only a subset of capsule types). When used in conjunction with a universally present gene target however, *bexA* or a capsule type-specific PCR provides useful additional information.

With only two samples in the panel it was not possible to test the sensitivity of different methods. This would require a larger number of non-culture samples to be included in the EQA panel. A generous concentration of killed bacteria was used in the samples in this EQA to avoid the relative sensitivities of different methods complicating the interpretation of results. A proposal to include more non-culture samples in the panel was put forward following the inclusion of only two non-culture samples in the previous EQA distribution. It is disappointing that it was not possible to increase the number of samples this year.

Conclusions

The level of characterisation of strains of *Haemophilus influenzae* varies between EU countries. This emphasises the need for consensus and agreement in methods for characterising and accurately defining this organism. Some countries still require some capacity building in this area.

The results of this EQA exercise have shown improvements in a number of areas compared to the results from the 2011 EQA distribution. All European Haemophilus Reference Laboratories now routinely serotype isolates compared to 27/29 (93%) in 2011. Nineteen laboratories (68%) perform PCR-based capsular genotyping compared to 15 (52%) in 2011. Twenty six laboratories routinely perform antimicrobial susceptibility testing and the number of laboratories following EUCAST guidelines has increased from 8 in 2011 to 14 in 2012.

The EQA exercise has again demonstrated the value of PCR-based genotyping methods in providing a serotype/genotype for strains that give inconclusive results on slide agglutination. Ideally a genotyping method should be used for all H. influenzae isolates in order to confidently identify Hib and capsule deficient Hib⁻ strains. This is of particular importance where routine Hib immunisation has been implemented, since it is essential to be able to accurately identify Hib vaccine failures. It is of note that the Hib isolate included in the EQA was identified by the majority of participating laboratories. In addition, molecular based capsular typing can act as a quality control measure to monitor the accuracy of the results of conventional serotyping.

The results of antimicrobial susceptibility testing again proved difficult to interpret due to the use of different methods and breakpoints. It is recommended that all European laboratories adopt the EUCAST methods of antimicrobial susceptibility testing which should facilitate better comparison of the results from different laboratories. On a positive note the number of countries following EUCAST guidelines has increased from eight to fourteen since the 2011 EQA distribution.

Two simulated clinical samples were again included in the EQA panel to assess non-culture detection methods. This time a non-typable isolate was included, which would not have been detected by some of the PCRs used by last year's participants. Encouragingly, all participants used PCRs targeted against universal (or almost universally) carried genes and so this isolate did not cause the anticipated problems. It was encouraging that some participants also performed additional PCRs and so could determine the capsule type of the H. influenzae isolates. The future inclusion of a greater number of non-culture samples would allow the sensitivity of each participant's PCR to be compared.

References

- 1. Falla TJ, Crook DW, Brophy LN *et al.* PCR for capsular typing of *Haemophilus influenzae.* J.Clin Microbiol, 1994; 32:2382-2386.
- 2. Van Ketel RJ, deWever B, van Alphen L. detection of *Haemophilus influenzae* in cerebral fluids by polymersase chain reaction DNA amplification. J Med Microbiol 1990; 33: 271-276
- 3. Meats E, Feil EJ, Stringer S *et al* .Characterization of encapsulated and non-encapsulated *Haemophilus influenzae* and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol. 2003; 41: 1623-1636.
- 4. Medeiros AA and O'Brien TF. Ampicillin-resistant *Haemophilus influenzae* type b possessing a TEM-type β-lactamase but little permeability barrier to ampicillin. Lancet 1975; 1: 716-719.
- 5. Medeiros AA, Levesque R and Jacoby GA. An animal source for the ROB-1 β-lactamase of *Haemophilus influenzae type b*. Antimicrobial Agents & Chemotherapy, 1986; 29: 212-215.
- 6. Resman F, Ristovski M, Forsgren A et al. Increase of β-lactam resistance in invasive *Haemophilus influenzae* isolates in Sweden, 1997-2010. Antimicrobial Agents & Chemotherapy, 2012;56: 4408-4415
- 7. Van Klingeren B, van Embden JDA and Dessens-Kroon M. Plasmid-mediated chloramphenicol resistance in *Haemophilus influenzae*. Antimicrob Agents Chemother, 1977; 11: 383-387
- 8. Powell M and Livermore DM. Mechanisms of chloramphenicol resistance in *Haemophilus influenzae* in the United Kingdom. J. Med. Microbiol, 1988; 27: 89-93.
- 9. Burns JL, Mendelman PM, Levy J *et al.* A permeability barrier as a mechanism of chloramphenicol resistance in *Haemophilus influenzae.* Antimicrob. Agents Chemother. 1985; 27: 46-54.
- Parr TR Jr and Bryan LE. Mechanism of resistance of an ampicillin-resistant β-lactamase negative clinical isolate of *Haemophilus influenzae* type b to β-lactam antibiotics. Antimicrobial Agents & Chemotherapy, 1984; 25: 747-753.
- 11. Clairoux N, Picard M, Brochu A *et al.* Molecular basis of non beta-lactamase mediated resistance to beta-lactam antibiotics in strains of *Haemophilus influenzae* isolated in Canada. Antimicr. Agents Chemother. 1992; 36: 1504-1513.
- 12. Ubukata K, Shibasaki Y, Yamamoto K et al. Association of amino acid substitutions in penicillin-binding protein 3 with βlactamase-negative-ampicillin-resistant *Haemophilus influenzae*. Antimicrob Agents Chemother, 2001; 45: 1693-1699.
- Kaczmarek FS, Gootz TD, Dib-Hajj F *et al.* Genetic and molecular characterization of β-lactamase-negative ampicillinresistant *Haemophilus influenzae* with unusually high resistance to ampicillin. Antimicr. Agents Chemother. 2004; 48: 1630-1639.
- 14. Satola SW, Collins JT, Napier R and Farley MM. Capsule gene analysis of invasive *Haemophilus influenzae:* accuracy of serotyping and prevalence of IS*1016* among nontypable isolates. Journal of Clinical Microbiology, 2007; 45: 3230-3238
- 15. Jansen W T, Verel A, Beitsma M *et al.* Longitudinal European surveillance study of antibiotic resistance of *Haemophilus influenzae*. Journal of Antimicrobial Chemotherapy, 2006; 58: 873-877.
- 16. Livermore DM, Winstanley TG and Shannon KP. Interpretative reading: recognizing the unusual and inferring resistance mechanisms from resistance phenotypes. Journal of Antimicrobial Chemotherapy, 2001; 48 (Suppl. 1): 87-102.
- 17. James PA, Lewis DA, Jordens JZ *et al*. The incidence and epidemiology of β-lactam resistance in *Haemophilus influenzae*. J.Antimicr. Chemother. 1996; 37: 737-746.
- 18. Nørskøv-Lauritsen N, Ridderberg W, Erikstruip LT and Fuursted K. Evaluation of disk diffusion method to detect lowlevel-β-lactamase-negative ampicillin-resistant *Haemophilus influenzae*. APMIS, 2011; 119: 385-392.
- Kärpänoja P, Nissinen A, Huovinen P *et al.* Disc diffusion susceptibility testing of *Haemophilus influenzae* by NCCLS methodology using low-strength ampicillin and amoxicillin-clavulanate discs. J Antimicrob Chemother, 2004; 53: 660-663.

Annex 1 List of reference laboratories participating in ECDC project

Laboratory surveillance and External Quality Assurance (EQA) of invasive bacterial diseases in EU

Reference Laboratories for H. influenzae

Austria

Sigrid Heuberger National Reference Centre for Meningococci, Pneumococci and Haemophilus influenzae Austrian Agency for Food and Health Safety Beethovenstraße 6 8010 Graz, Austria

Belgium

Françoise Crokaert Laboratoire de la Porte de Hal - CHU St-Pierre Rue Haute 322 B-1000 Bruxelles, Belgique

Bulgaria

Dimitar Nashev National center for infectious and parasitic diseases 26 Y. Sakazov Blvd 1504 Sofia, Bulgaria

Cyprus

Despo Pieridou Bagatzouni Nicosia general hospital Microbiology Department 1450 Nicosia, Cyprus

Czech Republic

Vera Lebedova National Reference Laboratory for Haemophilus Infections Centre of Public Health Laboratories National Institute of Public Health Srobarova 48 100 42 Prague 10, Czech Republic

Denmark

Lotte Lambertsen Neisseria and Streptococcus Reference Laboratory Department of Bacteriology, Mycology and Parasitology Statens Serum Institut 5 Artillerivej, building 211/117B 2300 Copenhagen, Denmark

Estonia

Laura Kunder Central Laboratory of Communicable Diseases Health Board Kotka 2 11315 Tallinn, Estonia

Finland

Anni Virolainen-Julkunen National Institute for Health and Welfare (THL) PO Box 30 00271 Helsinki, Finland

France

Olivier Gaillot Centre National de Référence des Haemophilus influenzae Laboratoire de Bactériologie-Hygiène Centre de Biologie Pathologie CHRU de Lille Boulevard du Professeur Jules Leclercq 59037 Lille

Germany

Matthias Frosch & Ulrich Vogel Institute for Hygiene and Microbiology University of Wuerzburg Josef-Schneider-Strasse 2 97080 Würzburg, Germany

Greece

Dr. Georgina Tzanakaki National Meningitis Reference Laboratory National School of Public Health 196 Alexandras Avenue 115 21 Athens, Greece

Hungary

Ákos Tóth Department of Bacteriology Johan Bela National Centre for Epidemiology Gyali ut 2-6 1097 Budapest, Hungary

Iceland

Hjordis Hardardóttoir Department of Clinical Microbiology Institute of Laboratory Medicine Landspitali University Hospital Baronsstigur 101 Reykjavik, Iceland

Ireland

Robert Cunney Irish Meningococcal and Meningitis Reference Laboratory Children's University Hospital Temple Street Dublin 1, Ireland

Italy

Marina Cerquetti Department of Infectious, Parasitic and Immunomediated Diseases Istituto Superiore di Sanità Viale Regina Elena 299 00161 Rome, Italy

Latvia

Jelena Galajeva Bacteriology Department Laboratory of the State Agency Infectology Center of Latvia Bacteriology Department 3 Linezera street Riga, LV 1006, Latvia

Lithuania

Migle Janulaitiene National Public Health Surveillance Laboratory Zolyno str. 36 10210 Vilnius, Lithuania

Luxembourg

Jos Even Director, Laboratoire National de Santé 42 rue du Laboratoire L-1911 Luxembourg, Luxembourg

Malta

Paul Caruna Mater Dei hospital Tal-Qroqq Msida, MSD 2090, Malta

Netherlands

Lodewijk Spanjaard Netherlands Reference Laboratory for Bacterial Meningitis Department of Medical Microbiology Academic Medical Center, L-1-Z Meibergdreef 15 1105 AZ Amsterdam, Netherlands

Norway

Martin Steinbakk National Institute of Public Health Division of Infectious Disease Control Dept. of Bacteriology and Immunology PO Box 4404 Nydalen 0403 Oslo, Norway

Poland

Alicja Kuch & Anna Skoczynska National Reference Centre for Bacterial Meningitis Department of Epidemiology and Clinical Microbiology National Medicines Institute Chelmska Street 30/34 00-725 Warsaw, Poland

Portugal

Paula Lavado Departamento de Doenças Infecciosas Laboratorio Nacional de Referência de Infecções Respiratórias (agentes bacterianos) Instituto Nacional de Saúde Dr Ricardo Jorge Avenida Padre Cruz 1649-016 Lisboa, Portugal

Romania

Mihaela Giuca National Institute for Microbiology and Immunology Cantacuzino Splaiul Independentei 103 050096 Sector 5, Bucuresti, Romania

Slovak Republic

Elana Nováková National Reference Centre for Haemophilus Infections Regional Public Health Authority RUVZ - NRC HI V Spanyola 27 011 71 Žilina, Slovak Republic

Slovenia

Metka Paragi & Tamara Kastrin Head of Laboratory for Immunology and Molecular Diagnostics Institute of Public Health Slovenia Grablovičeva 44 1000 Ljubljana, Slovenia

Spain

Jose Campos Centro Nacional de Microbiologia Instituto de Salud Carlos III Ctra Majadahonda Pozuelo Km2 28220 Madrid, Spain

Sweden

Birgitta Henriques Normark Department of Bacteriology Swedish Institute for Infectious Disease Control Nobels väg 18 171 82 Solna, Sweden

UK

Mary Slack Haemophilus Reference Unit Specialist and Reference Microbiology Division Public Health England 61 Colindale Avenue London NW9 5HT, UK

Annex 2 Consensus results for *Haemophilus influenzae* identification, typing and antimicrobial susceptibility testing

EQA		1386	1387	1388	1389	1390	1391	1392
number								
Ę	Species	H. influenzae	H. influenzae	H. influenzae	H.parainfluenzae	H. influenzae		
itypic	Serotype	Hib-	NTHi	Hib	NA	Hif		
Phenotypic identification	Biotype	I	II	I	Π	Ι		
	Species	H. influenzae	H. influenzae	H. influenzae	H.parainfluenzae	H. influenzae	H. influenzae	H. influenzae
Genotypic identification	Capsular type	Hib-	NTHi	Hib	NA	Hif		
Ger ider	other	ST-6	ST-14	ST-6	NA	ST-124		

Antimicrobial susceptibility

Antimicrobial agent	EQA number							
	1386	1387	1388	1389	1390			
Ampicillin	S	R	R	S	S			
Co-amoxyclav	S	R	S	S	S			
Beta-lacatamase	Negative	Negative	Positive	Negative	Negative			
Chloramphenicol	S	S	R	S	S			
Ciprofloxacin	S	S	S	S	S			
Ceftriaxone	S	S	S	S	S			
Cefotaxime	S	S	S	S	S			

S=susceptible

R=resistant

Annex 3 Example of report generated by UK NEQAS

N		Haemophilus influen	zae	Laboratory : NM10
N EQA	A S	Distribution : 3213		Page 1 of 30
Ś		Dispatch Date : 08-M	lay-2012	
Intended Result			Your Report	Your Score
Specimen 1386				
	Phenotypic species ID	H. influenzae	H. influenzae	Not scored
	Phenotypic serotype	Hi non typable	Non specific agglutination	Not scored
	Phenotypic biotype		Not examined	Not scored
	Genotypic species ID	H. influenzae	H. influenzae	Not scored
	Genotypic capsular type	Hib-	Hib-	Not scored
	Ampicillin	susceptible	susceptible	Not scored
	Beta-lactamase	negative	negative	Not scored
	Cefotaxime	susceptible	susceptible	Not scored
	Ceftriaxone	susceptible	susceptible	Not scored
	Chloramphenicol	susceptible	susceptible	Not scored
	Ciprofloxacin	susceptible	susceptible	Not scored
	Co-amoxiclay	susceptible	susceptible	Not scored
			·	
Specimen 1387				
	Phenotypic species ID	H. influenzae	H. influenzae	Not scored
	Phenotypic serotype	Hi non typable	Hi non typable	Not scored
	Phenotypic biotype	II	Not examined	Not scored
	Genotypic species ID	H. influenzae	H. influenzae	Not scored
	Genotypic capsular type	Hi non typable	Hi non typable	Not scored
	Ampicillin	resistant	resistant	Not scored
	Beta-lactamase	negative		Not scored
	Cefotaxime	susceptible	negative susceptible	Not scored
	Ceftriaxone	susceptible	susceptible	Not scored
	Chloramphenicol	susceptible	susceptible	Not scored
	Ciprofloxacin	susceptible	susceptible	Not scored
	Co-amoxiclav	susceptible	resistant	Not scored
			rookan	
Specimen 1388				
	Phenotypic species ID	H. influenzae	H. influenzae	Not scored
	Phenotypic serotype	Hib	Hib	Not scored
	Phenotypic biotype	I	Not examined	Not scored
	Genotypic species ID	H. influenzae	H. influenzae	Not scored
	Genotypic capsular type	Hib	Hib	Not scored
	Ampicillin	resistant	resistant	Not scored
	Beta-lactamase	resistant		Not scored
	Cefotaxime	positive susceptible	positive susceptible	Not scored Not scored
	Ceftriaxone	susceptible	susceptible	Not scored Not scored
	Chloramphenicol	resistant	resistant	Not scored
	Ciprofloxacin	susceptible	susceptible	Not scored
	Co-amoxiclav	susceptible	susceptible	Not scored
Specimen 1389				
	Phenotypic species ID	H. parainfluenzae	H. parainfluenzae	Not scored
	Phenotypic serotype	Not applicable	Not applicable	Not scored
	Phenotypic biotype	II	Not examined	Not scored
	Genotypic species ID	Not H. influenzae	Not examined	Not scored
	Genotypic capsular type	Not applicable	Not applicable	Not scored
	Ampicillin	sussantible	sussentible	Not opper d
	Ampicillin Bata lastamasa	susceptible	susceptible	Not scored
	Beta-lactamase	negative	negative	Not scored
	Cefotaxime	susceptible	susceptible susceptible	Not scored
	Ceftriaxone	susceptible susceptible	•	Not scored
	Chloramphenicol	•	susceptible	Not scored
	Ciprofloxacin Co-amoxiclav	susceptible susceptible	susceptible susceptible	Not scored Not scored
	-alliuxiciav	susceptible	susceptible	Not scoled

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ © Copyright. The data in UK NEQAS reports are confidential. Participants must consult the scheme organiser before quoting data from the scheme. UK NEQAS for Microbiology, PO Box 63003 London NW9 1GH Organised on behalf of ECDC IBD LabNet. Published at 15.09.13 on Monday 16 July 2012

	4	Haemophilus inf	uenzae	Laboratory : NM10
N E C	A	Distribution : 321	3	Page 2 of 30
Ş	6	Dispatch Date : ()8-May-2012	
ended Result			Your Report	Your Scor
ecimen 1390	Phenotypic species II	D H. influenzae	H. influenzae	Not scored
	Phenotypic serotype	Hif	Hif	Not scored Not scored
	Phenotypic biotype	1	Not examined	Not scored
	Genotypic species ID	H. influenzae	H. influenzae	Not scored
	Genotypic species in Genotypic capsular ty		Hif	Not scored
	Ampicillin	susceptible	susceptible	Not scored
	Beta-lactamase	negative	negative	Not scored
	Cefotaxime	susceptible	susceptible	Not scored
	Ceftriaxone	susceptible	susceptible	Not scored
	Chloramphenicol	susceptible	susceptible	Not scored
	Ciprofloxacin	susceptible	susceptible	Not scored
	Co-amoxiclav	susceptible	susceptible	Not scored
ecimen 1391				
	Non-culture species I	D H. influenzae	H. influenzae	Not scored
ecimen 1392	(molecular)			
	Non-culture species I (molecular)	D H. influenzae	H. influenzae	Not scored
ta-lactamase re loramphenicol, ported by metho termining the N	esults were reported by 22 for ciprofloxacin, 19 od is displayed on page	all of the participating laborato for ceftriaxone and 20 for cefc s 15 to 29 with the interpretati l another agar dilution. Particip	. The extraction, amplification and detection i ories with 24 reporting susceptibility results: 2 taxime. These results are summarised on pa on by guideline tabulated. The majority of par pants were asked only to report MIC results h	3 tested for ampicillin, 17 for co- ges 14 and 15. A breakdown of the MIC resu ticipants reported using E test with one
a-lactamase re oramphenicol, orted by metho ermining the N	esults were reported by 22 for ciprofloxacin, 19 od is displayed on page /IIC by broth dilution and	all of the participating laborato for ceftriaxone and 20 for cefc s 15 to 29 with the interpretati l another agar dilution. Particip	pries with 24 reporting susceptibility results: 2 taxime. These results are summarised on pa on by guideline tabulated. The majority of par	methods used are tabulated on page 30. 3 tested for ampicillin, 17 for co-amoxiclav, 1 ges 14 and 15. A breakdown of the MIC resu ticipants reported using E test with one
a-lactamase re oramphenicol, orted by metho ermining the N	esults were reported by 22 for ciprofloxacin, 19 od is displayed on page /IIC by broth dilution and	all of the participating laborato for ceftriaxone and 20 for cefc s 15 to 29 with the interpretati l another agar dilution. Particip	pries with 24 reporting susceptibility results: 2 taxime. These results are summarised on pa on by guideline tabulated. The majority of par	methods used are tabulated on page 30. 3 tested for ampicillin, 17 for co-amoxiclav, 1 ges 14 and 15. A breakdown of the MIC resu ticipants reported using E test with one
a-lactamase re oramphenicol, orted by metho ermining the N	esults were reported by 22 for ciprofloxacin, 19 od is displayed on page /IIC by broth dilution and	all of the participating laborato for ceftriaxone and 20 for cefc s 15 to 29 with the interpretati l another agar dilution. Particip	pries with 24 reporting susceptibility results: 2 taxime. These results are summarised on pa on by guideline tabulated. The majority of par	methods used are tabulated on page 30. 3 tested for ampicillin, 17 for co-amoxiclav, 1 ges 14 and 15. A breakdown of the MIC resu ticipants reported using E test with one
a-lactamase re pramphenicol, prted by metho ermining the N	esults were reported by 22 for ciprofloxacin, 19 od is displayed on page /IIC by broth dilution and	all of the participating laborato for ceftriaxone and 20 for cefc s 15 to 29 with the interpretati l another agar dilution. Particip	pries with 24 reporting susceptibility results: 2 taxime. These results are summarised on pa on by guideline tabulated. The majority of par	methods used are tabulated on page 30. 3 tested for ampicillin, 17 for co-amoxiclav, 1 ges 14 and 15. A breakdown of the MIC resu ticipants reported using E test with one
a-lactamase re pramphenicol, prted by metho ermining the N	esults were reported by 22 for ciprofloxacin, 19 od is displayed on page /IIC by broth dilution and	all of the participating laborato for ceftriaxone and 20 for cefc s 15 to 29 with the interpretati l another agar dilution. Particip	pries with 24 reporting susceptibility results: 2 taxime. These results are summarised on pa on by guideline tabulated. The majority of par	methods used are tabulated on page 30. 3 tested for ampicillin, 17 for co-amoxiclav, 1 ges 14 and 15. A breakdown of the MIC resu ticipants reported using E test with one
a-lactamase re pramphenicol, prted by metho ermining the N	esults were reported by 22 for ciprofloxacin, 19 od is displayed on page /IIC by broth dilution and	all of the participating laborato for ceftriaxone and 20 for cefc s 15 to 29 with the interpretati l another agar dilution. Particip	pries with 24 reporting susceptibility results: 2 taxime. These results are summarised on pa on by guideline tabulated. The majority of par	methods used are tabulated on page 30. 3 tested for ampicillin, 17 for co-amoxiclav, 1 ges 14 and 15. A breakdown of the MIC resu ticipants reported using E test with one
a-lactamase re pramphenicol, prted by metho ermining the N	esults were reported by 22 for ciprofloxacin, 19 od is displayed on page /IIC by broth dilution and	all of the participating laborato for ceftriaxone and 20 for cefc s 15 to 29 with the interpretati l another agar dilution. Particip	pries with 24 reporting susceptibility results: 2 taxime. These results are summarised on pa on by guideline tabulated. The majority of par	methods used are tabulated on page 30. 3 tested for ampicillin, 17 for co-amoxiclav, 1 ges 14 and 15. A breakdown of the MIC resu ticipants reported using E test with one
a-lactamase re pramphenicol, prted by metho ermining the N	esults were reported by 22 for ciprofloxacin, 19 od is displayed on page /IIC by broth dilution and	all of the participating laborato for ceftriaxone and 20 for cefc s 15 to 29 with the interpretati l another agar dilution. Particip	pries with 24 reporting susceptibility results: 2 taxime. These results are summarised on pa on by guideline tabulated. The majority of par	methods used are tabulated on page 30. 3 tested for ampicillin, 17 for co-amoxiclav, 1 ges 14 and 15. A breakdown of the MIC resu ticipants reported using E test with one
a-lactamase re oramphenicol, orted by metho ermining the N	esults were reported by 22 for ciprofloxacin, 19 od is displayed on page /IIC by broth dilution and	all of the participating laborato for ceftriaxone and 20 for cefc s 15 to 29 with the interpretati l another agar dilution. Particip	pries with 24 reporting susceptibility results: 2 taxime. These results are summarised on pa on by guideline tabulated. The majority of par	methods used are tabulated on page 30. 3 tested for ampicillin, 17 for co-amoxiclav, 1 ges 14 and 15. A breakdown of the MIC resu ticipants reported using E test with one
ta-lactamase re oramphenicol, orted by metho ermining the N	esults were reported by 22 for ciprofloxacin, 19 od is displayed on page /IIC by broth dilution and	all of the participating laborato for ceftriaxone and 20 for cefc s 15 to 29 with the interpretati l another agar dilution. Particip	pries with 24 reporting susceptibility results: 2 taxime. These results are summarised on pa on by guideline tabulated. The majority of par	methods used are tabulated on page 30. 3 tested for ampicillin, 17 for co-amoxiclav, 1 ges 14 and 15. A breakdown of the MIC resu ticipants reported using E test with one

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ © Copyright. The data in UK NEQAS reports are confidential. Participants must consult the scheme organiser before quoting data from the scheme. UK NEQAS for Microbiology, PO Box 63003 London NW9 1GH Organised on behalf of ECDC IBD LabNet. Published at 15:09:16 on Monday 16 July 2012

N		Haemophilu	s influenzae				Laboratory :	NM1	0
NEQAS		Distribution	: 3213				Page 4 of 30)	
\$		Dispatch Da	te : 08-May-2	2012					
Specimen : 1386 ompP2 PCR 16S PCR оmpP6 PCR	Genotypic s	species ID ↓ ↓ 8 12 Number of Reports		20	All (%) 11 (78.6) 1 (7.1) 2 (14.3)			All 15 15	Score
Specimen : 1386	Genotypic c	capsular type	4-		All (%) 17 (100)	Your Repo	ort : Hib- e : Not scored		
Variation of Falla et al	0 4	I I I 4 8 12 Number of Report	I 16	20	17 (100)	Overall Re Hib Hib-	esults	All 1 14	Score

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ © Copyright. The data in UK NEQAS reports are confidential. Participants must consult the scheme organiser before quoting data from the scheme. UK NEQAS for Microbiology, PO Box 63003 London NW9 1GH Organised on behalf of ECDC IBD LabNet. Published at 15:09 15 on Monday 16 July 2012

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

N. E:		Haemophilu	s influenza	е			Laboratory :	NM1	0
NEQAS	5	Distribution	3213				Page 6 of 30		
Ş		Dispatch Da	te : 08-May	-2012					
Specimen : 1387 ompP2 PCR 16S PCR		species ID	16	720	All (%) 11 (78.6) 1 (7.1) 2 (14.3)			All 15	Score
	4 H. influenzae	Number of Reports				T OLAI		10	
-	I. influenzae Genotypic o				All (%) 17 (100)	Your Rep	ort : Hi non typable re : Not scored esults		Score
Specimen : 1387	I. influenzae Genotypic (Number of Reports	⊄- 16		. ,	Your Rep Your Scor	re : Not scored		Score

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

N		Haemophilus	influenzae				Laboratory :	NM1	0
NIEQAS		Distribution : 3	213				Page 8 of 30)	
\$		Dispatch Date	: 08-May-2	:012					
ompP2 PCR	Genotypic spe	tries ID ↓ ↓ 8 12 Number of Reports	1 16	20	All (%) 11 (78.6) 1 (7.1) 2 (14.3)	Your Sco			Score
Specimen : 1388	Genotypic cap								
Variation of Falla et al			4		All (%) 17 (100)	Your Rep Your Sco Overall Re	re : Not scored	All	Score
Variation of Falla et al) 4	8 12 Number of Reports	↓ 16	20	. ,	Your Score Overall Re Hib Hi non typ	re : Not scored	All 18 1	Score

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

N			Haemophilus influenz	ae			Laboratory :	NM1	0
	8		Distribution : 3213				Page 10 of 3	30	
\$			Dispatch Date : 08-M	ay-2012					
Specimen : 1389	Geno	otypic specie	s ID						
ompP2 PCR	ompP2 PCR gene sequencing				All (%) 7 (63.6)		ort : Not examined re : Not scored		
16S gene sequencing 16S PCR					1 (9.1) 1 (9.1)	Overall R	esults	All	Score
ompP6 PCR	16S PCR ompP6 PCR	2	4 6 8		2 (18.2)	H. influen: H. parainf Not H. infl	luenzae	1 5 7	
			Number of Reports			 Total		13	
		H. influenzae	H. parainfluenzae	Not H.	influenzae	, ordi			
Specimen : 1389	Gend	H. influenzae		Not H.			ort ∶ Not applicable		
				• Not H.	All (%) 9 (100)	Your Rep	ort : Not applicable re : Not scored		
		otypic capsul	ar type	<u>م</u>	All (%)	Your Rep	re : Not scored		Score
					All (%)	Your Rep Your Scor Overall Ro Hib- Not applic	re : Not scored esults		Score
Specimen : 1389 Variation of Falla et al		otypic capsul	ar type	<u>م</u>	All (%)	Your Rep Your Scor Overall Re Hib-	re : Not scored esults	All 1	Score
		btypic capsul	ar type	<u>م</u>	All (%)	Your Rep Your Scor Overall Re Hib- Not applic	re : Not scored esults	All 1 11	Score
		btypic capsul	ar type	<u>م</u>	All (%)	Your Rep Your Scor Overall Re Hib- Not applic	re : Not scored esults	All 1 11	Score

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

Ni		Haemoph	ilus influen:	zae			Laboratory	: NM1	0
	3	Distributio	on : 3213				Page 12 of	30	
\$			Date : 08-M	ay-2012					
Specimen : 1390 pmpP2 PCR 16S PCR pmpP6 PCR	Genotypic s	pecies ID			All (%) 11 (78.6) 1 (7.1) 2 (14.3)	Your Sco Overall Re			Scor
0 4		8 12	H. influenzae		zae 	15 			
_	I. influenzae	Number of Reports	5						
Gpecimen : 1390	Genotypic	Number of Reports			All (%)	Your Rep Your Sco			
	Genotypic o	apsular type		4-	All (%) 17 (100)	Your Sco	re : Not scored esults	All	Scol
□ ⊧ specimen : 1390	Genotypic o	apsular type	1 I 12 16	↓ 20	()	Your Sco	re : Not scored	All 18 1	Sco

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

N	Haemophilus ir	nfluenzae				Laboratory :	NM1	0
	Distribution : 32	213				Page 13 of	30	
Ś	Dispatch Date :	: 08-May-20	12					
Specimen: 1391 Non-cultu	re species ID (molecular)							
				All (%)		ort : H. influenzae re : Not scored		
ompP2 fucK Other	4−			7 (41.2) 1 (5.9) 2 (11.8)	Overall Re		All	Score
ompP6 16S				2 (11.8) 2 (29.4)	H. influen: Not H. infl	zae uenzae	16 1	
0 2	4 6	8	10		Not H. Infl Total	uenzae type b	1 18	
	Number of Reports		enzae type b					
L H. influenzae								
Specimen : 1392 Non-cultu	re species ID (molecular)			All (%)		ort : H. influenzae re : Not scored		
Specimen : 1392 Non-cultu ompP2				7 (41.2) 1 (5.9)		re : Not scored	All	Score
Specimen : 1392 Non-cultu ompP2	re species ID (molecular)			7 (41.2)	Your Scor Overall Re H. influenz Not H. infl	re : Not scored esults zae	All 16 1	Score
Specimen : 1392 Non-cultu ompP2 fuck Other ompP6	re species ID (molecular)		-10	7 (41.2) 1 (5.9) 2 (11.8) 2 (11.8)	Your Scor Overall Re H. influenz Not H. infl	re : Not scored esults zae luenzae	16 1	Score
Specimen : 1392 Non-cultu ompP2 fuck Other 16S	re species ID (molecular)	I 8 ■ H. influenza		7 (41.2) 1 (5.9) 2 (11.8) 2 (11.8)	Your Score Overall Re H. influen: Not H. infl H. influen:	re : Not scored esults zae luenzae	16 1 1	Score
Specimen : 1392 Non-cultu ompP2 fuck Other 16S	re species ID (molecular)	_		7 (41.2) 1 (5.9) 2 (11.8) 2 (11.8)	Your Score Overall Re H. influen: Not H. infl H. influen:	re : Not scored esults zae luenzae	16 1 1	Score
Specimen : 1392 Non-cultu ompP2 fuck Other 16S	re species ID (molecular)	_		7 (41.2) 1 (5.9) 2 (11.8) 2 (11.8)	Your Score Overall Re H. influen: Not H. infl H. influen:	re : Not scored esults zae luenzae	16 1 1	Score

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

NI EQAS						
E	Haem	ophilus influen	zae		Laboratory : N	NM10
N E Q A S	Distrib	oution : 3213			Page 14 of 3	0
Ŝ	Dianat	ah Data : 09 N	lov 2012			
	Dispat	ch Date : 08-N	lay-2012			
Specimen : 1386 H	. influenzae					
Antimicrobial agent	Correct result	No. of lab S All	oratories report M/I	ting as R	% of Laboratories with correct result All	
Ampicillin	susceptible	23	0	0	100	
Co-amoxiclav	susceptible	17	0	0	100	
Beta-lactamase	negative	27	0	0	100	
Chloramphenicol Ciprofloxacin	susceptible susceptible	18 22	0 0	0	100 100	
Ceftriaxone	susceptible	18	õ	õ	100	
Cefotaxime	susceptible	20	0	0	100	
Specimen : 1387 H	. influenzae					
Antimicrobial agent	Correct	No. of lab	oratories report	ting as	% of Laboratories	
	result	S	M/I	R	with correct result	
		All			All	
Ampicillin	resistant	3	6	14	60.9	
Co-amoxiclav	susceptible	11	0	6	64.7	
Beta-lactamase Chloramphenicol	negative susceptible	26 18	0	0	100 100	
Ciprofloxacin	susceptible	21	0	0	100	
Ceftriaxone	susceptible	19	0	0	100	
Cefotaxime	susceptible	19	1	0	95.0	
Specimen : 1388 H	. influenzae					
Antimicrobial agent	Correct	No. of lab	oratories report	ting as	% of Laboratories	
	result	S All	M/I	R	with correct result All	
Ampicillin Co-amoxiclav	resistant susceptible	0 17	0 0	23 0	100 100	
Beta-lactamase	positive	0	0	28	100	
Chloramphenicol	resistant	0	0	17	100	
Ciprofloxacin	susceptible	22	1	0	95.7	
Ceftriaxone Cefotaxime	susceptible	19 20	0 0	0	100	
Cerotaxime	susceptible	20	0	0	100	
Specimen: 1389 H	. parainfluenzae					
Antimicrobial agent	Correct		oratories report		% of Laboratories	
	result	S All	M/I	R	with correct result All	
Ampicillin	susceptible	21	0	1	95.5	
Co-amoxiclav	susceptible	15	õ	1	93.8	
Beta-lactamase	negative	25	0	0	100	
Chloramphenicol	susceptible	18	0	0	100	
Ciprofloxacin Ceftriaxone	susceptible susceptible	21 17	0 0	0 0	100 100	
Cefotaxime	susceptible	19	0	0	100	
Specimen : 1390 H	. influenzae					
Antimicrobial agent	Correct	No. of lab	oratories report	ting as	% of Laboratories	
	result	S	M/I	R	with correct result	
		All			All	
A	susceptible	22	0	1	95.7	
Ampicillin	susceptible	16	0	0	100	
Co-amoxiclav		26	0	1	96.3	
Co-amoxiclav Beta-lactamase	negative					
Co-amoxiclav Beta-lactamase Chloramphenicol	susceptible	17	0	1	94.4	
Co-amoxiclav Beta-lactamase						

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

E-			Haemophilus influenzae				Laborato	ory : NM10
	\$		Distribution : 3213			F	^D age 15	of 30
\$			Dispatch Date : 08-May-2012					
Specimen : 138	6							
Ampicillin - spe		86		Amp	icillin			
ntended result : susc	eptible		Your guideline : EUCAST		S	I.	R	% concordance
MIC method	MIC 0.032	Count		score				
gradient MIC gradient MIC	0.032	1 1						
gradient MIC	0.064	4		EUCAST	11	0	0	100
gradient MIC	0.094	2		CLSI	10	0	0	100
gradient MIC	0.12	2		NWGA SFM	1 1	0 0	0 0	100 100
gradient MIC	0.125	2		SFIVI		0		100
gradient MIC	0.19	1 2		All	23	0	0	100.0
gradient MIC gradient MIC	0.25 0.5	2		UK	1	õ	õ	100.0
MIC microdilution	0.5	1			-	-	-	
Other	0.125	1						
eta-lactamase		en 1386		Beta	-lactamas	e		
tended result : nega	ative		Your guideline : EUCAST		S	R	% cond	cordance
MIC method	MIC	Count		score				
				EUCAST	15	0	100	
				CLSI	10	0	100	
				NWGA	1	õ	100	
				SFM	1	õ	100	
				All	27	0	100.0	
				UK	1	0	100.0	
		386		Cefo	taxime			
Cefotaxime - sp			Your guideline : EUCAST		S	I.	R	% concordance
	eptible							
tended result : susc MIC method	MIC	Count						
tended result : susc MIC method gradient MIC	MIC <0.016	6		score				
tended result : susc MIC method gradient MIC gradient MIC	MIC <0.016 <0.03	6 1			10	0	0	100
tended result : susc MIC method gradient MIC gradient MIC gradient MIC	MIC <0.016 <0.03 0.004	6 1 2		EUCAST	10 8	0	0	100 100
tended result : susc MIC method gradient MIC gradient MIC gradient MIC gradient MIC	MIC <0.016 <0.03 0.004 0.008	6 1 2 2		EUCAST CLSI	8	0	0	100
tended result : susc MIC method gradient MIC gradient MIC gradient MIC gradient MIC gradient MIC	MIC <0.016 <0.03 0.004 0.008 0.01	6 1 2 2 1		EUCAST CLSI NWGA				
ntended result : susc MIC method gradient MIC gradient MIC gradient MIC gradient MIC gradient MIC gradient MIC gradient MIC	MIC <0.016 <0.03 0.004 0.008 0.01 0.016	6 1 2 2 1 1		EUCAST CLSI	8 1	0 0	0 0	100 100
tended result : susc MIC method gradient MIC gradient MIC gradient MIC gradient MIC gradient MIC	MIC <0.016 <0.03 0.004 0.008 0.01	6 1 2 2 1		EUCAST CLSI NWGA	8 1	0 0	0 0	100 100

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

			-					
N			Haemophilus influenzae				Laborato	ry : NM10
N EQAS			Distribution : 3213				Page 16	of 30
Ś			Dispatch Date : 08-May-2012					
Ceftriaxone - spec	imen 138	6		Ceftr	iaxone			
Intended result : suscepti		-	Your guideline : EUCAST		S	I	R	% concordance
		Count		score				
		1 1						
		5		EUCAST	7	0	0	100
		1		CLSI NWGA	9 1	0 0	0 0	100 100
		1 3		SFM	1	0	0	100
		3 1						
				All UK	18 1	0 0	0 0	100.0 100.0
				UK		0	0	100.0
			-					
Chloramphenicol - Intended result : suscepti	- specime	en 138		Chloi	ramphenio		_	
-			Your guideline : EUCAST		S	Ι	R	% concordance
		Count 1		score				
		2						
gradient MIC C	0.38	1		EUCAST	9 8	0 0	0 0	100 100
		2		CLSI NWGA	o 1	0	0	100
		2 1						
gradient MIC 1		2		All	18	0	0	100.0
Other 0	0.5	1		UK	1	0	0	100.0
Ciprofloxacin - spe Intended result : suscepti	ecimen 1	386		Cipro	floxacin			
			Your guideline : EUCAST		S	T	R	% concordance
gradient MIC <	<=0.002	Count 1		score		_		
		1 1		EUCAST	11	0	0	100
		2		CLSI	9	0	0	100
gradient MIC 0	0.004	4		NWGA	1	0 0	0	100 100
		3		SFM	1		0	100
		1 1		All	22	0	0	100.0
		1		UK	1	0	0	100.0

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

Nj E:			Haemophilus influenzae			l	_aborat	ory : NM10
NEQAS	\$		Distribution : 3213			F	Dage 17	7 of 30
A. Si			Dispatch Date : 08-May-2012					
Co-amoxiclav - s	specimen	1386		Co-a	moxiclav			
Intended result : susce			Your guideline : EUCAST		S	I.	R	% concordance
MIC method gradient MIC	MIC 0.125	Count 2		score				
gradient MIC	0.19	1		EUCAST	7	0	0	100
gradient MIC gradient MIC	0.25 0.4	5 1		CLSI	8	ō	0	100
gradient MIC	0.4	2		NWGA	1	0	0	100
MIC microdilution	0.38	1		SFM	1	0	0	100
Other	0.25	1						
				All	17	0	0	100.0
				UK	1	0	0	100.0

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

N			Haemophilus influenzae			L	aborato	ory : NM10
	\$ 5		Distribution : 3213			P	age 18	of 30
S			Dispatch Date : 08-May-2012					
Specimen : 138	7							
Ampicillin - spe tended result : resis	cimen 13	887		Ampi			_	o/ 1
MIC method	MIC	Count	Your guideline : EUCAST		S	I	R	% concordance
gradient MIC gradient MIC	1.5 2	3 9		score				
gradient MIC	2	9		EUCAST	0	0	11	100
gradient MIC	3	1		CLSI	2	6	2	20.0
gradient MIC	4.0	1		NWGA SFM	1 0	0 0	0 1	0.0 100
gradient MIC	8	1						
MIC microdilution Other	2 4	1 1		All	3	6	14	60.9
	·			UK	0	0	1	100.0
eta-lactamase	- specim	nen 1387		Beta	-lactama:			
•		Your guideline : EUCAST	Your guideline : EUCAST		S	R	% cond	cordance
MIC method	MIC	Count		score				
				EUCAST	15	0	100	
				CLSI	9	Ō	100	
				NWGA	1	0	100	
				SFM	1	0	100	
				All	26	0	100.0	
				UK	1	0	100.0	
efotaxime - sp tended result : susc		1387	Your guideline : EUCAST	Ceto	taxime S	I	R	% concordance
MIC method	MIC	Count		score	~			
gradient MIC gradient MIC	0.047 0.06	1 1						
gradient MIC	0.064	1		EUCAST	10	0	0	100
gradient MIC	0.094	4		CLSI	7	1	0	87.5
gradient MIC	0.12	1		NWGA SFM	1 1	0 0	0 0	100 100
gradient MIC	0.125	2		5FIVI				
gradient MIC gradient MIC	0.25 8	3		All	19	1	0	95.0
MIC microdilution	o 0.12	1 1		UK	1	0	0	100.0
MIC microdilution	0.12	1		UK	I	U	U	100.0

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

Count 3 1 2 8 7 1 4 1 1 2 1 Pecimen 138 Count 2 3 3 4	Distribution : 3213 Dispatch Date : 08-May-2012 Your guideline : EUCAST	score EUCAST CLSI NWGA SFM All UK	iaxone S 9 1 1 19 1 rampher S 9	I 0 0 0 0 0 0 0	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% concordance
Count 3 1 2 8 7 1 4 1 1 2 1 Pecimen 138 Count 2 2 3 3	Your guideline : EUCAST	Score EUCAST CLSI NWGA SFM All UK Chlo	S 8 9 1 1 19 1 1 rampher S	0 0 0 0 0	0 0 0 0 0 0 R	100 100 100 100 100.0 100.0 100.0 % concordance
Count 3 1 2 8 7 1 4 1 1 2 1 Pecimen 138 Count 2 2 3 3	37	Score EUCAST CLSI NWGA SFM All UK Chlo	S 8 9 1 1 19 1 1 rampher S	0 0 0 0 0	0 0 0 0 0 0 R	100 100 100 100 100.0 100.0 100.0 % concordance
Count 3 1 2 8 7 1 4 1 1 2 1 Pecimen 138 Count 2 2 3 3	37	EUCAST CLSI NWGA SFM All UK Chlo	8 9 1 19 19 1	0 0 0 0 0	0 0 0 0 0 0 R	100 100 100 100 100.0 100.0 100.0 % concordance
3 1 2 8 7 1 4 1 2 1 2 1 Pecimen 138 Count 2 2 3 3		EUCAST CLSI NWGA SFM All UK Chlo	9 1 19 19 1 rampher S	0 0 0 0 0	0 0 0 0 0 0 8	100 100 100 100.0 100.0 100.0 % concordance
1 2 8 7 1 4 1 2 1 ecimen 138 Count 2 2 3 3		EUCAST CLSI NWGA SFM All UK Chlo	9 1 19 19 1 rampher S	0 0 0 0 0	0 0 0 0 0 0 8	100 100 100 100.0 100.0 100.0 % concordance
2 8 7 1 4 1 2 1 Pecimen 138 Count 2 2 3 3		CLSI NWGA SFM All UK Chlo	9 1 19 19 1 rampher S	0 0 0 0 0	0 0 0 0 0 0 8	100 100 100 100.0 100.0 100.0 % concordance
4 1 1 2 1 Pecimen 138 Count 2 2 3 3		NWGA SFM All UK Chlo	1 19 19 1	0 0 0 0	0 0 0 0 8	100 100 100.0 100.0 100.0 % concordance
2 1 ecimen 138 Count 2 2 3 3		SFM All UK Chlo score	1 19 1 rampher S	0 0 0	0 0 0 R	100 100.0 100.0 % concordance
2 1 ecimen 138 Count 2 2 3 3		UK Chlo 	1 rampher S	0 nicol I	0 R	100.0 % concordance
Count 2 2 3 3		UK Chlo 	1 rampher S	0 nicol I	0 R	100.0 % concordance
Count 2 2 3 3		Chlo score	rampher S	nicol I	R	% concordance
Count 2 2 3 3		score	S	I		
2 2 3 3	Your guideline : EUCAST					
2 2 3 3			 Q			
2 3 3			 Q			
3 3		EUCAST	a			
				0	0	100
		CLSI NWGA	8 1	0 0	0 0	100 100
1 1						
1		All UK	18 1	0 0	0 0	100.0 100.0
nen 1387		Cipro				% concordance
Count					<u>к</u>	
31		score				
		EUCAST	11	0	0	100
3 4		CLSI	9	0	0	100
1		NWGA	1	0	0	100
4 1 06 1 3 1		All UK	21 1	0 0	0 0	100.0 100.0
3553 40	Count 1 5 4 1 1 6 1	Your guideline : EUCAST Count 1 5 4 1 1 6 1	Ten 1387 Cipre Your guideline : EUCAST	Ten 1387 Ciprofloxacin Your guideline : EUCAST S Count	S I Your guideline : EUCAST S I Count score I 1 EUCAST I I 5 EUCAST 11 0 4 CLSI 9 0 1 All 21 0	S I R Your guideline : EUCAST S I R Count score

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

Nj			Haemophilus influenzae			L	.abora	tory : NM10
NEQA	\$3		Distribution : 3213			P	age 2	0 of 30
A S			Dispatch Date : 08-May-2012					
Co-amoxiclav -	specime	n 1387		Co-a	moxiclav	,		
Intended result : susc			Your guideline : EUCAST		S	I.	R	% concordance
MIC method gradient MIC	MIC 1.5	Count 1		score				
gradient MIC gradient MIC gradient MIC gradient MIC gradient MIC MIC microdilution Other	12 2 3 4 8 2 2	1 3 4 1 1		EUCAST CLSI NWGA SFM All UK	3 8 0 0 11 0	0 0 0 0 0	4 0 1 1 6	42.9 100 0.0 0.0 64.7 0.0

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

E			Haemophilus influenzae			L	.aborato	ory : NM10
	\$		Distribution : 3213			P	age 21	of 30
S			Dispatch Date : 08-May-2012					
Specimen : 138	8							
Ampicillin - spe ntended result : resis		88		Ampi	icillin S		R	0/
MIC method	MIC	Count	Your guideline : EUCAST				к	% concordance
gradient MIC	>256	3		score				
gradient MIC gradient MIC	1.5 12	1 2		EUCAST	0	0	11	100
gradient MIC	16	1		CLSI	0	0	10	100
gradient MIC	2	1		NWGA	0	0	1	100
gradient MIC	4	2		SFM	0	0	1	100
gradient MIC	6	1						
gradient MIC	6.0	1		All	0	0	23	100.0
gradient MIC	8	3		UK	0	0	1	100.0
MIC microdilution	12 6	1 1						
eta-lactamase	- specim	en 1388		Beta	lactamas	e		
ended result : posit			Your guideline : EUCAST		S	R	% cond	ordance
/IC method MIC	Count		score					
				EUCAST	0	15	100	
				CLSI	0	15	100 100	
				NWGA	0	1	100	
				SFM	õ	1	100	
				All	0	28	100.0	
				UK	0	1	100.0	
				Cofe	taxime			
ofotovimo on		300	Your guideline : EUCAST	0610	S	I.	R	% concordance
efotaxime - sp ended result : susc		Count						
ended result : susc	MIC	Count						
ended result : susc /IC method	MIC <0.016	Count 3		score				
ended result : susc IIC method radient MIC								
ended result : susc IIC method radient MIC radient MIC	< 0.016	3		EUCAST	10	0	0	100
ended result : susc IIC method radient MIC radient MIC radient MIC	<0.016 0.008	3 1		EUCAST	8	0	0	100
ended result : susc IIC method radient MIC radient MIC radient MIC radient MIC	<0.016 0.008 0.012	3 1 1 3 1		EUCAST CLSI NWGA	8 1	0 0	0 0	100 100
ended result : susc IIC method radient MIC radient MIC radient MIC radient MIC radient MIC	<0.016 0.008 0.012 0.016	3 1 1 3 1 2		EUCAST	8	0	0	100
ended result : susc fIC method radient MIC radient MIC radient MIC radient MIC radient MIC radient MIC	<0.016 0.008 0.012 0.016 0.023	3 1 1 3 1		EUCAST CLSI NWGA SFM	8 1 1	0 0 0	0 0 0	100 100 100
	<0.016 0.008 0.012 0.016 0.023 0.03	3 1 1 3 1 2		EUCAST CLSI NWGA	8 1	0 0	0 0	100 100

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

			•					07
N			Haemophilus influenzae				Laborato	ry : NM10
	8		Distribution : 3213				Page 22	of 30
\$			Dispatch Date : 08-May-2012					
Ceftriaxone - spe	cimen 13	88		Ceftr	iaxone			
Intended result : susce			Your guideline : EUCAST		S	Т	R	% concordance
MIC method	MIC	Count		score				
gradient MIC gradient MIC	<=0.25 <0.016	1 5						
gradient MIC	<0.03	1		EUCAST	8	0	0	100
gradient MIC	0.003	1		CLSI NWGA	9 1	0 0	0 0	100 100
gradient MIC gradient MIC	0.004 0.006	3 1		SFM	1	õ	Ő	100
Other	<0.016	1		 All		0	0	100.0
				UK	19	0	0	100.0
Chloramphenico	I - specim	en 138	8	Chlo	rampheni	col		
Intended result : resista	ant		Your guideline : EUCAST		S	Т	R	% concordance
MIC method	MIC	Count		score				
gradient MIC gradient MIC	12 16	1 3						
gradient MIC	3	1		EUCAST	0	0	9	100
gradient MIC	32	1		CLSI NWGA	0 0	0 0	7 1	100 100
gradient MIC gradient MIC	4 6.0	1 2						
gradient MIC	8	2		All UK	0 0	0 0	17 1	100.0 100.0
Other	12	1		ÖK	0	U	·	100.0
Ciprofloxacin - s	pecimen 1	388		Cipro	ofloxacin			
MIC method	MIC	Count	Your guideline : EUCAST		S		R	% concordance
gradient MIC	<0.03	1		score				
gradient MIC gradient MIC	0.004 0.006	2 3		EUCAST	11	0	0	100
gradient MIC	0.006	3 6		CLSI	9	1	0	90.0
gradient MIC	0.016	1		NWGA SFM	1 1	0 0	0 0	100 100
MIC microdilution Other	0.008 0.012	1 1		3F1VI				
Other	0.012	•		All UK	22 1	1 0	0 0	95.7 100.0

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

			Haemophilus influenzae			L	abora	tory : NM10
			Distribution : 3213			P	age 2	3 of 30
A S			Dispatch Date : 08-May-2012					
Co-amoxiclav -	specimer	า 1388		Co-a	moxiclav			
Intended result : susc			Your guideline : EUCAST		S	I.	R	% concordance
MIC method gradient MIC	MIC 0.38	Count 2		score				
gradient MIC gradient MIC gradient MIC gradient MIC gradient MIC MIC microdilution Other	0.5 0.50 0.75 1 2 0.75 0.094	3 1 3 1 1		EUCAST CLSI NWGA SFM All UK	7 8 1 1 17 17	0 0 0 0	0 0 0 0 0	100 100 100 100 100 100.0 100.0

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

N			Haemophilus influenzae			L	aborato	ory : NM10
	S 3		Distribution : 3213			F	Page 24	of 30
\$			Dispatch Date : 08-May-2012					
Specimen : 138	9							
Ampicillin - spee ntended result : susc		9	Your guideline : EUCAST	Ampi	icillin S	I	R	% concordance
MIC method	MIC	Count					к	% concordance
gradient MIC	<0.015	1		score				
gradient MIC	0.094	1		EUCAST	10	0	1	90.9
gradient MIC	0.12	1		CLSI	10	0	0	100
gradient MIC	0.125	1		NWGA	1	0	0	100
gradient MIC	0.25	3						
gradient MIC	0.38	1		All	21	0	1	95.5
gradient MIC gradient MIC	0.380 0.4	1 1		UK	1	õ	0	100.0
gradient MIC	0.4	3						
gradient MIC	0.75	1						
gradient MIC	1	1						
MIC microdilution	0.25	1						
Other	0.38	1						
Other	0.75	1						
Beta-lactamase	- specime	n 1389		Beta	-lactamas	е		
ntended result : nega	tive		Your guideline : EUCAST		S	R	% conc	ordance
MIC method	IIC method MIC C		-					
			score					
				EUCAST	13	0	100	
				CLSI	10	õ	100	
				NWGA	1	õ	100	
				SFM	1	õ	100	
				All UK	25 1	0 0	100.0 100.0	
Cefotaxime - sp	ecimen 13	89		Cefo	taxime			
ntended result : susc	eptible		Your guideline : EUCAST		S	I.	R	% concordance
MIC method gradient MIC	MIC <0.002	Count 1		score				
gradient MIC	<0.016	4		EUCAST	10	0	0	100
gradient MIC	0.012	2		CLSI	8	0	0	100
gradient MIC	0.016	1		NWGA	1	õ	Ő	100
gradient MIC gradient MIC	0.03 0.032	1 3					-	
gradient MIC	0.032	3 1		All	19	0	0	100.0
MIC microdilution	<=0.03	1		UK	1	0	0	100.0
Other	0.016	1						

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

Distribution : 3213 Dispatch Date : 08-May-2012 Your guideline : EUCAST Tour guideline : EUCAST Your guideline : EUCAST	SCORE EUCAST CLSI NWGA AII UK	iaxone S 7 9 1 17 1 7 1 7 9 1 9 1 9 8 1		R R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% concordance 100 100 100 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
9 Your guideline : EUCAST Count 2 4 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	Chlo Score EUCAST CLSI NWGA AII UK Chlo Score EUCAST CLSI	S 7 9 1 17 1 7 1 7 9 8	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	100 100 100 100.0 100.0 100.0 % concordance
Your guideline : EUCAST	Chlo Score EUCAST CLSI NWGA AII UK Chlo Score EUCAST CLSI	S 7 9 1 17 1 7 1 7 9 8	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	100 100 100 100.0 100.0 100.0 % concordance
Your guideline : EUCAST	CLSI CLSI NWGA All UK Chlo score EUCAST CLSI	7 9 1 17 1 1 ramphen S 9 8	0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	100 100 100 100.0 100.0 100.0 % concordance
n 1389 Your guideline : EUCAST Count	CLSI CLSI NWGA All UK Chlo score EUCAST CLSI	9 1 17 1 rampheni S 9 8	0 0 0 0 0 0	0 0 0 0 0 0 0	100 100 100.0 100.0 % concordance % concordance
n 1389 Your guideline : EUCAST Count	CLSI CLSI NWGA All UK Chlo score EUCAST CLSI	9 1 17 1 rampheni S 9 8	0 0 0 0 0 0	0 0 0 0 0 0 0	100 100 100.0 100.0 % concordance % concordance
n 1389 Your guideline : EUCAST Count	CLSI NWGA AII UK Chlo score EUCAST CLSI	9 1 17 1 rampheni S 9 8	0 0 0 0 0 0	0 0 0 0 0 0 0	100 100 100.0 100.0 % concordance % concordance
n 1389 Your guideline : EUCAST Count	NWGA All UK Chlo score EUCAST CLSI	1 17 1 rampheni S 9 8	0 0 0 1 1 0 0	0 0 0 R R 0 0	100 100.0 100.0 % concordance
n 1389 Your guideline : EUCAST Count	All UK Chlo score EUCAST CLSI	17 1 rampheni S 9 8	0 0 icol 1 0 0	0 0 R R 0 0	100.0 100.0 % concordance
Your guideline : EUCAST Count 2 2 3 3 3	UK Chio score EUCAST CLSI	1 rampheni S 9 8	0 icol I 0 0	0 R 0 0	100.0 % concordance 100 100
Your guideline : EUCAST Count 2 2 3 3 3	score EUCAST CLSI	S 	 0 0	0 0	100 100
Your guideline : EUCAST Count 2 2 3 3 3	score EUCAST CLSI	S 	 0 0	0 0	100 100
Count 1 2 1 3 1 3	EUCAST CLSI	9 8	0	0 0	100 100
1 2 1 3 1	EUCAST CLSI	8	0	0	100
2 1 3 1	EUCAST CLSI	8	0	0	100
1 3 1 3	CLSI	8	0	0	100
3					
3				0	100
	All UK	18 1	0 0	0 0	100.0 100.0
89	Cipro	ofloxacin			
Your guideline : EUCAST		S	I.	R	% concordance
Count I	score				
2	EUCAST	11	0	0	100
5	CLSI	9	0	0	100
1	NWGA	1	0	0	100
	All UK	21 1	0 0	0 0	100.0 100.0
	Your guideline : EUCAST count	Your guideline : EUCAST Sount EUCAST CLSI NVVGA	Your guideline : EUCAST Sount	Your guideline : EUCAST S I sount Score EUCAST 11 0 CLSI 9 0 NWGA 1 0 All 21 0	Your guideline : EUCAST S I R sount EUCAST 11 0 0 CLSI 9 0 0 NWGA 1 0 0 All 21 0 0

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

			Haemophilus influenzae			La	oorato	ory : NM10
			Distribution : 3213			Pa	ge 26	of 30
A. Si			Dispatch Date : 08-May-2012					
Co-amoxiclav -	specimen	1389		Co-a	moxiclav			
Intended result : susc			Your guideline : EUCAST		S	I	R	% concordance
MIC method gradient MIC	MIC 0.023	Count 1		score				
gradient MIC gradient MIC gradient MIC gradient MIC	0.064 0.094 0.125 0.25	1 1 1 1		EUCAST CLSI NWGA	-	 D D D	1 0 0	85.7 100 100
gradient MIC gradient MIC MIC microdilution Other	0.5 1 <=0.25 0.094	4 1 1		Ali UK		D D	1 0	93.8 100.0

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

N			Haemophilus influenzae			L	aborato	ory : NM10
	S 3		Distribution : 3213			P	age 27	of 30
\$			Dispatch Date : 08-May-2012					
Specimen : 1390	D							
Ampicillin - spece Intended result : susce	cimen 13	90	Your guideline : EUCAST	Amp	cillin S	1	R	~ .
MIC method	MIC	Count		score				% concordance
gradient MIC gradient MIC gradient MIC	0.19 0.190 0.25	5 1 6		EUCAST CLSI	11 9	0 0	0 1	100 90.0
gradient MIC gradient MIC MIC microdilution	0.5 1 0.12	3 1 1		NWGA SFM	1 1	0	0 0	100 100
Other	0.25	1		All UK	22 1	0 0	1 0	95.7 100.0
eta-lactamase		en 1390						
ntended result : nega MIC method	tive MIC	Count	Your guideline : EUCAST		S	R	% conc	ordance
MIC Include	WIIO	Count		score				
				EUCAST CLSI NWGA SFM	15 9 1 1	0 1 0 0	100 90.0 100 100	
				All UK	26 1	1 0	96.3 100.0	
Cefotaxime - spe itended result : susce		390	Your guideline : EUCAST	Ceto	taxime S	I	R	% concordance
MIC method gradient MIC	MIC <0.023	Count 1		score				
gradient MIC gradient MIC gradient MIC gradient MIC	0.016 0.023 0.03 0.032 0.06	1 4 2 2 1		EUCAST CLSI NWGA SFM	10 8 1 1	0 0 0 0	0 0 0 0	100 100 100 100 100
gradient MIC	0.06	2						

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

N			Haemophilus influenzae			Labora	atory : NM10
	\$		Distribution : 3213			Page 2	28 of 30
S			Dispatch Date : 08-May-2012				
Ceftriaxone - sp	ecimen 1	390		Ceftr	iaxone		
Intended result : susc	eptible		Your guideline : EUCAST		S	I R	% concordance
MIC method	MIC	Count					
gradient MIC	<=0.25	1		score			
gradient MIC gradient MIC	<0.016 <0.03	3 1		EUCAST	7	0 0	100
gradient MIC	0.006	1		CLSI	9	0 0	100
gradient MIC	800.0	3		NWGA	1	0 0	100
gradient MIC	0.012	1		SFM	1	0 0	100
gradient MIC gradient MIC	0.016 0.25	1 1		All	18	0 0	100.0
Other	<0.016	1		UK	1	0 0	100.0
Chloramphenicon ntended result : susc		nen 139		Chlo	ramphenic		
MIC method	MIC	Count	Your guideline : EUCAST		S	I R	% concordance
gradient MIC	0.38	1		score			
gradient MIC	0.5	1		EUCAST	9	0 0	100
gradient MIC	0.75	2 4		CLSI	7	0 1	87.5
gradient MIC gradient MIC	1 1.0	4		NWGA	1	0 0	100
gradient MIC	1.5	1					
MIC microdilution Other	<=1 0.75	1 1		All UK	17 1	0 1 0 0	94.4 100.0
Ciprofloxacin - s		1390		Cipro	ofloxacin		
		0	Your guideline : EUCAST		S	I R	% concordance
MIC method gradient MIC gradient MIC	MIC <0.03 0.01	Count 1 1		score			
gradient MIC	0.015	1		EUCAST	11	0 0	100
gradient MIC	0.016	6		CLSI	9	0 0	100
gradient MIC	0.023	3		NWGA SFM	1 1	0 0 0 0	100 100
gradient MIC MIC microdilution	0.032 <=0.06	1 1					
Other	0.032	1		All UK	22 1	0 0 0 0	100.0 100.0

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

			Haemophilus influenzae			L	aborat	tory : NM10
			Distribution : 3213			P	age 29	9 of 30
A S			Dispatch Date : 08-May-2012					
Co-amoxiclav - s	pecimen	1390		Co-a	moxiclav			
Intended result : susce			Your guideline : EUCAST		S	I .	R	% concordance
MIC method gradient MIC	MIC 0.25	Count 3		score				
gradient MIC gradient MIC gradient MIC MIC microdilution	0.38 0.5 1 <=0.25	2 2 4 1		EUCAST CLSI NWGA	7 7 1	0 0 0	0 0 0	100 100 100
Other	0.75	1		SFM All UK	1 16 1	0 0 0	0	100 100.0 100.0

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ

UK National External Quality Assessment Service for Microbiology

NI	Haemophilus influenz	ae	Laboratory : NM10
NEQAS	Distribution : 3213		Page 30 of 30
Š.	Dispatch Date : 08-Ma	iy-2012	
PART 3			
Non-culture DNA extraction method	Non-culture detection method	Combination count	
Manual / in-house	PCR & gel electrophoresis	1	
Manual / commercial kit	PCR & gel electrophoresis	6	
Manual / commercial kit	Real-time PCR platform	4	
Manual / commercial kit	PCR & sequencing	3	
Automated / commercial kit	Real-time PCR platform	4	
Genotypic DNA extraction method	Count		
Manual / in-house	8		
Manual / commercial kit	7		
Automated / commercial kit	4		
Other	1		

UK NEQAS for Microbiology Hosted by the Health Protection Agency HPA-MS Specialist Microbiology Services 151 Buckingham Palace Road London SW1W 9SZ