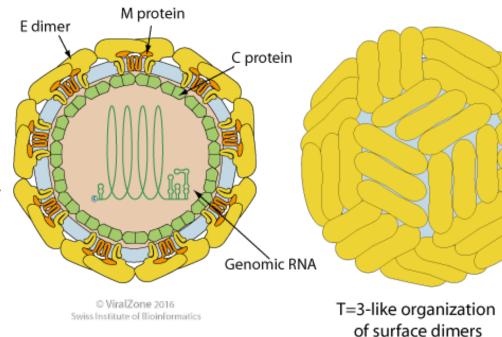




## Immune responses in TBEV infection and vaccination


Åke Lundkvist

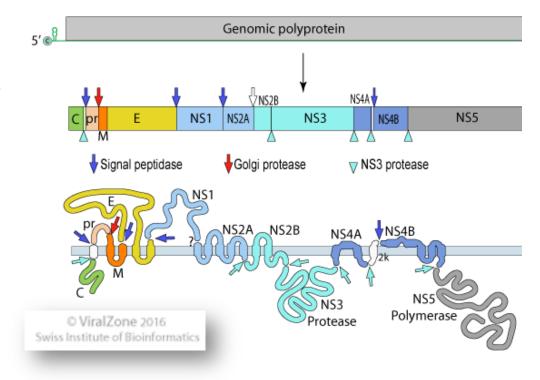




## The virus

Tick-Borne
 Encephalitis virus
 (TBEV) is an
 enveloped RNA virus
 of the family
 Flaviviridae. Size
 approx. 50 nm, single
 stranded +RNA 10 kb.








## The genome



- The RNA serves as both the genome and the viral messenger RNA. The whole genome is translated into a polyprotein.
- C capsid protein
- M membrane protein
- E envelope protein
- NS Non-structural proteins





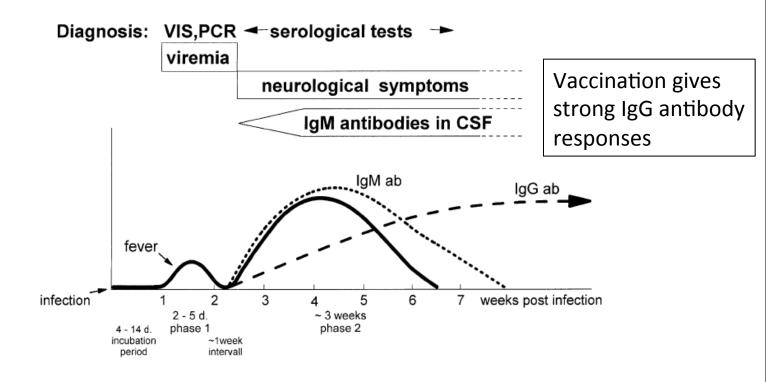


## Non-structural proteins

- The virion RNA serves as both the genome and the viral messenger RNA. The whole genome is translated into a polyprotein.
- C capsid protein
- M membrane protein
- E envelope protein
- NS Non-structural proteins
- NS1– nonstructural glycoprotein

"enigmatic protein" (Intracellular dimer/secreted hexamer)








## TBE diagnostics – serology needed

## Antibody detection using EIA/ELISA

H. Holzmann / Vaccine 21 (2003) S1/36-S1/40



22-09-29



## TBE - vaccines

- Two TBE vaccines are licensed in Europe,
   FSME-Immune (Pfizer) and Encepur
   (Bavarian Nordic).
- Both are based on purified inactivated TBEV
   whole-virus antigens (Austrian isolate
   Neudoerfl/ German isolate K23) and can be
   given from 1 year of age and gives good
   protection from disease (>95%).

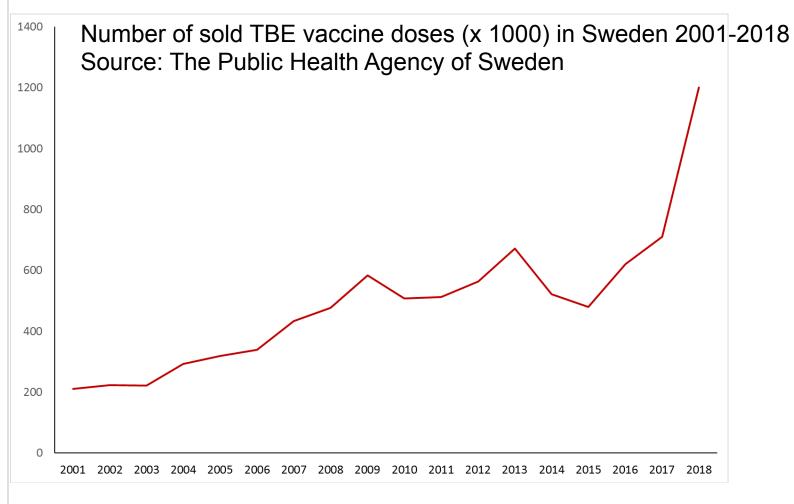
rne

For injection only

alitis



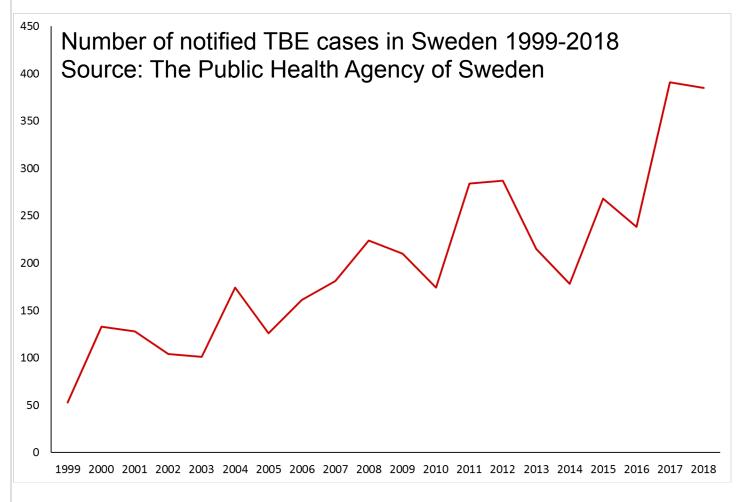



## **Vaccines**

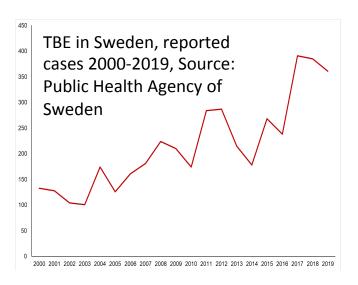
- Vaccination against TBE is effective to prevent TBE, but vaccine failures / vaccine breakthrough (VBT) occur.
- Andersson C, Vene S, Insulander M, Lindquist L, Lundkvist Å, Günther G. Vaccine failures after active immunisation against tick-borne encephalitis. Vaccine 28 (2010) 2827–2831
- Investigations of VBT is laborious and often include repeated antibody detection of blood and cerebrospinal fluid samples + neutralization test (NT) BSL 3.
- Simplify and improve diagnostics of VBT is a priority. TBEV SMIA has been tested.



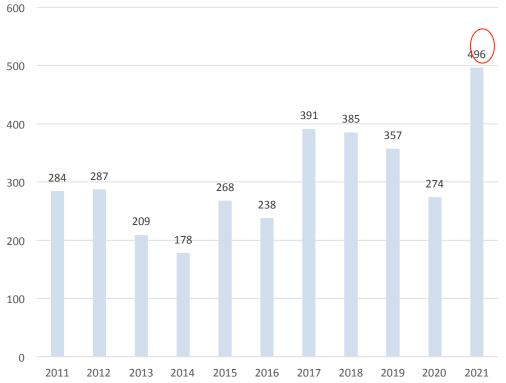






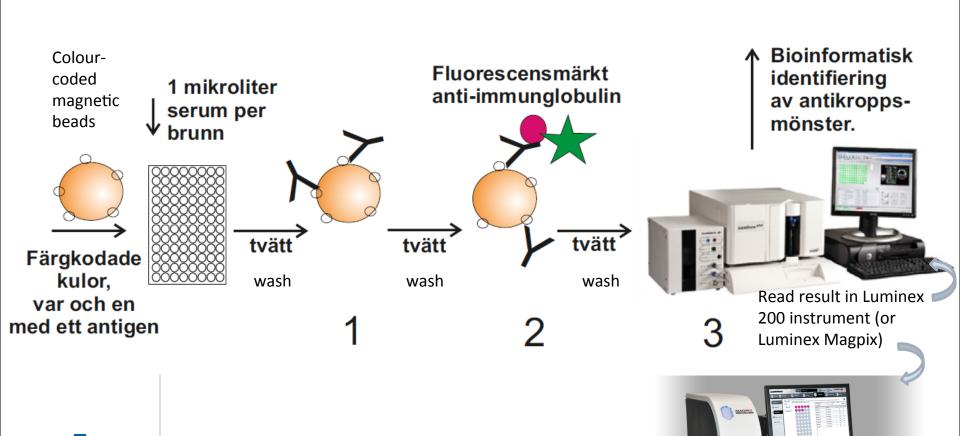









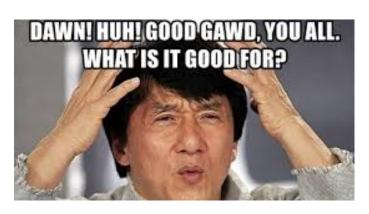




### Reported cases (until oct 2021) Source: Public Health Agency of Sweden





## Antibody detection using Suspension Multiplex Immuno Assay (SMIA)




## **TBEV Suspension Multiplex Immuno Assay (TBEV-SMIA)**

- The TBEV-SMIA method was developed from the more comprehensive Flavivirus suspension multiplex immunoassay, FSMIA (Rönnberg, Blomberg, Lundkvist et al, Med Microbiol Immunol (2017).
- TBEV Whole Virus (WV) and Non-structural protein 1 (NS1) antigens bound to differentially color-marked magnetic beads in a 96-well microtiter plate.
- Antibodies in serum samples binds to the antigen on the beads.
- Signals (via detection antibodies and conjugate) are analyzed using laser beams in a Luminex/Magpix instrution (Median Fluorescence Intensity) is calculated



## TBEV SMIA



- NS1 antigen is not present in existing vaccine preparations.
- -> Vaccinees are not expected to develop any antibodies against NS1.
- TBE exposed persons should develop antibodies to NS1.





### Example newly infected (part of results)

|        |         |      | ١٤  | 3G       |            |     |         |      | Ig  | M        |      |     | NT | IgG     | lg      | M       |
|--------|---------|------|-----|----------|------------|-----|---------|------|-----|----------|------|-----|----|---------|---------|---------|
| Sample | A       | 75   |     | A1       | L <b>4</b> |     | A75 A14 |      |     |          |      |     |    | Siemens | Siemens | Reascan |
|        | TBEV wv | Urea | ΑI  | TBEV NS1 | Urea       | ΑI  | TBEV wv | Urea | ΑI  | TBEV NS1 | Urea | ΑI  |    |         |         |         |
| 1      | 3208    | 148  | 0,0 | 659      | 50         | 0,1 | 3894    | 825  | 0,2 | 817      | 130  | 0,2 | ND | 46      | 2.2     | 287     |
| 2      | 992     | 32   | 0,0 | 155      | 23         |     | 4776    | 1062 | 0,2 | 755      | 136  | 0,2 | ND | 12      | 2.0     | 280     |
| 3      | 3384    | 1011 | 0,3 | 408      | 127        | 0,3 | 2557    | 355  | 0,1 | 513      | 78   | 0,2 | ND | 29      | 2.0     | 259     |
| 4      | 1742    | 80   | 0,0 | 238      | 45         | 0,2 | 2882    | 422  | 0,1 | 299      | 22   | 0,1 | ND | 47      | 1.6     | 278     |
| 5      | 1493    | 40   | 0,0 | 363      | 36         | 0,1 | 2992    | 385  | 0,1 | 286      | 33   | 0,1 | ND | 19      | 1.9     | 282     |
| 6      | 2613    | 97   | 0,0 | 773      | 47         | 0,1 | 3485    | 489  | 0,1 | 677      | 76   | 0,1 | ND | 52      | 1.6     | 81      |
| 7      | 1751    | 260  | 0,1 | 0        | 24         |     | 1232    | 106  | 0,1 | 162      | 10   |     | ND | 21      | 1.2     | 120     |
| 8      | 4443    | 331  | 0,1 | 754      | 56         | 0,1 | 5009    | 1227 | 0,2 | 357      | 83   | 0,2 | ND | 89      | 2.0     | 241     |
| 9      | 3470    | 359  | 0,1 | 269      | 55         | 0,2 | 3186    | 759  | 0,2 | 317      | 23   | 0,1 | ND | 86      | 2.0     | 249     |
| 10     | 2618    | 180  | 0,1 | 615      | 118        | 0,2 | 2690    | 383  | 0,1 | 214      | 22   | 0,1 | ND | 81      | 1.2     | 291     |
| 11     | 2202    | 116  | 0,1 | 564      | 142        | 0,3 | 2641    | 390  | 0,1 | 384      | 77   | 0,2 | ND | 20      | 1.6     | 259     |
| 12     | 3077    | 309  | 0,1 | 838      | 148        | 0,2 | 4032    | 753  | 0,2 | 621      | 198  | 0,3 | ND | 57      | 2.2     | 267     |



### Example vaccinated (part of results)

|         | IgG     |      |     |          |      |    |         |      | lg | M        |      | NT | IgG | lg      | М       |         |
|---------|---------|------|-----|----------|------|----|---------|------|----|----------|------|----|-----|---------|---------|---------|
| Sample  | А       | 75   |     | A1       | 4    |    | A       | 75   |    | A1       | ١4   |    |     | Siemens | Siemens | Reascan |
|         | TBEV wv | Urea | ΑI  | TBEV NS1 | Urea | ΑI | TBEV wv | Urea | ΑI | TBEV NS1 | Urea | ΑI |     |         |         |         |
| 707-0   | 212     | 42   |     | 0        | 14   |    | 5       | 0    |    | 1        | 0    |    | <5  | ND      | ND      | ND      |
| 707-120 | 692     | 82   | 0,1 | 39       | 14   |    | 28      | 0    |    | 6        | 0    |    | <5  | ND      | ND      | ND      |
| 707-390 | 4209    | 3258 | 0,8 | 111      | 123  |    | 24      | 0    |    | 0        | 0    |    | >20 | ND      | ND      | ND      |
| 708-0   | 160     | 61   |     | 12       | 13   |    | 93      | 30   |    | 40       | 0    |    | <5  | ND      | ND      | ND      |
| 708-120 | 201     | 35   |     | 16       | 6    |    | 86      | 16   |    | 34       | 0    |    | <5  | ND      | ND      | ND      |
| 708-390 | 0       | 0    |     | 10       | 30   |    | 59      | 21   |    | 0        | 0    |    | <5  | ND      | ND      | ND      |
| 709-0   | 223     | 46   |     | 0        | 7    |    | 0       | 0    |    | 4        | 0    |    | <5  | ND      | ND      | ND      |
| 709-120 | 804     | 111  | 0,1 | 44       | 24   |    | 73      | 7    |    | 0        | 0    |    | <5  | ND      | ND      | ND      |
| 709-390 | 1153    | 643  | 0,6 | 4        | 35   |    | 2       | O    |    | 0        | 0    |    | 20  | ND      | ND      | ND      |
| 710-0   | 204     | 44   |     | 0        | 17   |    | 0       | 0    | ĺ  | 0        | 0    |    | <5  | ND      | ND      | ND      |
| 710-120 | 225     | 37   |     | 0        | 0    |    | 0       | 0    |    | 0        | 0    |    | <5  | ND      | ND      | ND      |
| 710-390 | 2256    | 878  | 0,4 | 0        | 0    |    | 0       | 0    |    | 0        | 0    |    | >20 | ND      | ND      | ND      |







## Example newly infected (part of results)

|        |         |      | ١٤  | ξG       |      |     |         |      | Ig  | χM       |      | NT  | IgG | lg      | M       |         |
|--------|---------|------|-----|----------|------|-----|---------|------|-----|----------|------|-----|-----|---------|---------|---------|
| Sample | A       | 75   |     | A14      |      |     | A75     |      |     | A14      |      |     |     | Siemens | Siemens | Reascan |
|        | TBEV wv | Urea | ΑI  | TBEV NS1 | Urea | ΑI  | TBEV wv | Urea | ΑI  | TBEV NS1 | Urea | ΑI  |     |         |         |         |
| 1      | 3208    | 148  | 0,0 | 659      | 50   | 0,1 | 3894    | 825  | 0,2 | 817      | 130  | 0,2 | ND  | 46      | 2.2     | 287     |
| 2      | 992     | 32   | 0,0 | 155      | 23   |     | 4776    | 1062 | 0,2 | 755      | 136  | 0,2 | ND  | 12      | 2.0     | 280     |
| 3      | 3384    | 1011 | 0,3 | 408      | 127  | 0,3 | 2557    | 355  | 0,1 | 513      | 78   | 0,2 | ND  | 29      | 2.0     | 259     |
| 4      | 1742    | 80   | 0,0 | 238      | 45   | 0,2 | 2882    | 422  | 0,1 | 299      | 22   | 0,1 | ND  | 47      | 1.6     | 278     |
| 5      | 1493    | 40   | 0,0 | 363      | 36   | 0,1 | 2992    | 385  | 0,1 | 286      | 33   | 0,1 | ND  | 19      | 1.9     | 282     |
| 6      | 2613    | 97   | 0,0 | 773      | 47   | 0,1 | 3485    | 489  | 0,1 | 677      | 76   | 0,1 | ND  | 52      | 1.6     | 81      |
| 7      | 1751    | 260  | 0,1 | 0        | 24   |     | 1232    | 106  | 0,1 | 162      | 10   |     | ND  | 21      | 1.2     | 120     |
| 8      | 4443    | 331  | 0,1 | 754      | 56   | 0,1 | 5009    | 1227 | 0,2 | 357      | 83   | 0,2 | ND  | 89      | 2.0     | 241     |
| 9      | 3470    | 359  | 0,1 | 269      | 55   | 0,2 | 3186    | 759  | 0,2 | 317      | 23   | 0,1 | ND  | 86      | 2.0     | 249     |
| 10     | 2618    | 180  | 0,1 | 615      | 118  | 0,2 | 2690    | 383  | 0,1 | 214      | 22   | 0,1 | ND  | 81      | 1.2     | 291     |
| 11     | 2202    | 116  | 0,1 | 564      | 142  | 0,3 | 2641    | 390  | 0,1 | 384      | 77   | 0,2 | ND  | 20      | 1.6     | 259     |
| 12     | 3077    | 309  | 0,1 | 838      | 148  | 0,2 | 4032    | 753  | 0,2 | 621      | 198  | 0,3 | ND  | 57      | 2.2     | 267     |



### Example vaccinated (part of results)

|         | IgG 🔲   |      |     |          |      |    |         |      | lg | M        |      | NT | IgG | lg      | М       |         |
|---------|---------|------|-----|----------|------|----|---------|------|----|----------|------|----|-----|---------|---------|---------|
| Sample  | А       | 75   |     | A1       | 4    |    | A       | 75   |    | A1       | .4   |    |     | Siemens | Siemens | Reascan |
|         | TBEV wv | Urea | ΑI  | TBEV NS1 | Urea | ΑI | TBEV wv | Urea | ΑI | TBEV NS1 | Urea | ΑI |     |         |         |         |
| 707-0   | 212     | 42   |     | 0        | 14   |    | 5       | 0    |    | 1        | 0    |    | <5  | ND      | ND      | ND      |
| 707-120 | 692     | 82   | 0,1 | 39       | 14   |    | 28      | 0    |    | 6        | 0    |    | <5  | ND      | ND      | ND      |
| 707-390 | 4209    | 3258 | 0,8 | 111      | 123  |    | 24      | O    |    | 0        | 0    |    | >20 | ND      | ND      | ND      |
| 708-0   | 160     | 61   |     | 12       | 13   |    | 93      | 30   |    | 40       | 0    |    | <5  | ND      | ND      | ND      |
| 708-120 | 201     | 35   |     | 16       | 6    |    | 86      | 16   |    | 34       | 0    |    | <5  | ND      | ND      | ND      |
| 708-390 | 0       | 0    |     | 10       | 30   |    | 59      | 21   |    | 0        | 0    |    | <5  | ND      | ND      | ND      |
| 709-0   | 223     | 46   |     | 0        | 7    |    | 0       | Q    |    | 4        | 0    |    | <5  | ND      | ND      | ND      |
| 709-120 | 804     | 111  | 0,1 | 44       | 24   |    | 73      | 7    |    | O        | 0    |    | <5  | ND      | ND      | ND      |
| 709-390 | 1153    | 643  | 0,6 | 4        | 35   |    | 2       | O    |    | 0        | 0    |    | 20  | ND      | ND      | ND      |
| 710-0   | 204     | 44   |     | 0        | 17   |    | 0       | 0    |    | 0        | 0    |    | <5  | ND      | ND      | ND      |
| 710-120 | 225     | 37   |     | 0        | 0    |    | 0       | 0    |    | 0        | 0    |    | <5  | ND      | ND      | ND      |
| 710-390 | 2256    | 878  | 0,4 | 0        | 0    |    | 0       | 0    |    | 0        | 0    |    | >20 | ND      | ND      | ND      |





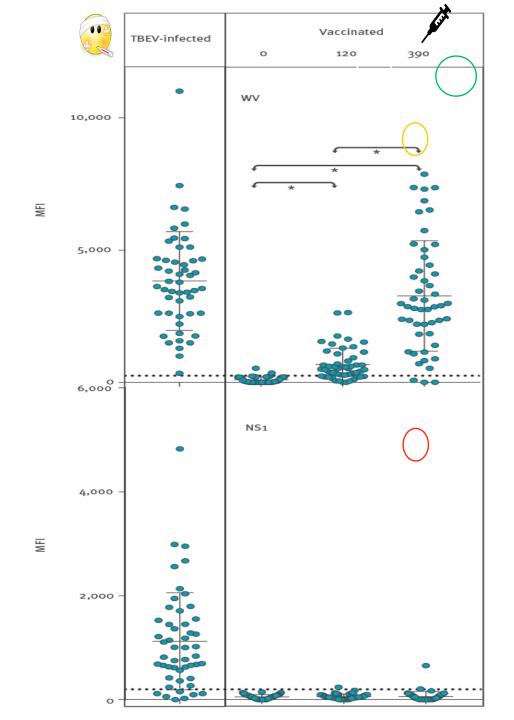



Fig. TBEV SMIA IgG reactivity whole virus vs NS1 antigens in infected (n = 50) vs vaccinated individuals (n = 50) at 0, 120 and 390 days after first vaccination.

Comment: 3 positive. 2 low close to cut-off. Infection during study period can not be ruled out.



## Aim

- To study if a TBEV Suspension Multiplex Immunoassay (TBEV SMIA), based on nonstructural protein 1 (NS1) and whole virus (WV) antigens, can be used for efficient detection of TBE vaccination failure cases.
- Serum and cerebrospinal fluid (CSF) samples from 14 patients previously analyzed at the Public Health Agency of Sweden were tested.
- All 14 patients had a documented history of previous TBEV vaccination and were all considered to be TBE vaccine failure cases.





Results

| 0,1,1,1  |                              |                     |                                  |                                                 |                             |                         |                                                    |                                                   |                                                    |
|----------|------------------------------|---------------------|----------------------------------|-------------------------------------------------|-----------------------------|-------------------------|----------------------------------------------------|---------------------------------------------------|----------------------------------------------------|
| Patient# | Age at<br>disease<br>(years) |                     | Number<br>of<br>vaccine<br>doses | Time from<br>last vaccine<br>dose to<br>disease | No of<br>sampling<br>points | Neutralisation<br>titer | IgM antibodies to<br>NS1 antigen in<br>sera or csf | lgM antibodies to<br>NS1 antigen in<br>sera alone | lgM and lgG<br>antibodies to wv<br>antigen in sera |
| 1        | 63                           | Male                | 4                                | 2 years                                         | 2                           | 10 -> 160               | Positive                                           | Negative                                          | Positive                                           |
| 2        | 67                           | Male                | 3                                | 2 years                                         | 1                           | 640                     | Positive                                           | Positive                                          | Positive                                           |
| 3        | 39                           | Male                | 2                                | 3 months                                        | 1                           | 80                      | Positive                                           | Positive                                          | Positive                                           |
| 4        | 21                           | Male                | 2                                | 5 months                                        | 1                           | 40-80                   | Positive                                           | Positive                                          | Positive                                           |
| 5        | 6                            | Male                | 3                                | 1 year                                          | 1                           | > 160                   | Positive                                           | Positive                                          | Positive                                           |
| 6        | 67                           | Female              | 3                                | Unknown                                         | 2                           | 640 -> 1280             | Positive                                           | Positive                                          | Positive                                           |
| 7        | 55                           | Female              | 2                                | 4 months                                        | 1                           | 160                     | Positive                                           | Positive                                          | Positive                                           |
| 8        | 52                           | Female              | 5                                | 3 years                                         | 1                           | 5                       | Negative                                           | Negative                                          | Positive                                           |
| 9        | 68                           | Male                | 4                                | 5 months                                        | 1                           | 80                      | Positive                                           | Positive                                          | Positive                                           |
| 10       | 64                           | Male                | 3                                | 1 year                                          | 2                           | 20 -> 80                | Positive                                           | Positive                                          | Positive                                           |
| 11       | 74                           | Male                | 4                                | 3 years                                         | 1                           | 160                     | Positive                                           | Positive                                          | Positive                                           |
| 12       | 62                           | Male                | 4                                | 3 years                                         | 1                           | n.d.                    | Negative                                           | Negative                                          | Positive                                           |
| 13       | 72                           | Male                | 3                                | 1 year                                          | 1                           | 320                     | Positive                                           | Positive                                          | Positive                                           |
| 14       | 76                           | Male                | 3                                | 2 years                                         | 1                           | 80-160                  | Negative                                           | Negative                                          | Positive                                           |
|          | Mean =<br>56                 | M/F ratio:<br>80/20 |                                  |                                                 |                             |                         | 11/14                                              | 10/14                                             | 14/14                                              |





## Conclusion



- The detection of antibodies directed to TBEV WV vs. NS1 antigen is a most useful tool to differentiate previous TBEV infections from vaccinations.
- The detection of antibodies directed to TBEV NS1 antigen considerably simplify and improve the quality in investigations regarding suspected TBEV infection in vaccinated patients.



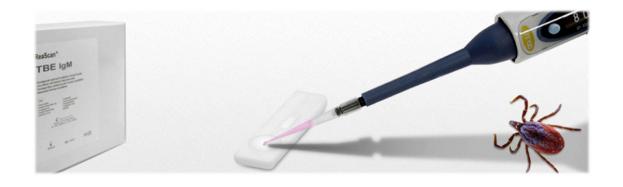
• In a material from Slovenia, 9/9 VBT patients had NS1 antibodies.



# Seroprevalence TBE (blood donors) TBEV SMIA whole virus/NS1 antigens



|                       | Antal       |
|-----------------------|-------------|
| Region                | serumprover |
| Gotland               | 300         |
| Gävle                 | 300         |
| Göteborg              | 300         |
| Karlstad              | 300         |
| Lund                  | 300         |
| Stockholm             | 300         |
| Umeå                  | 300         |
| Uppsala (inkl Hofors) | 300         |
| Växjö                 | 300         |
| Totalt                | 2700        |

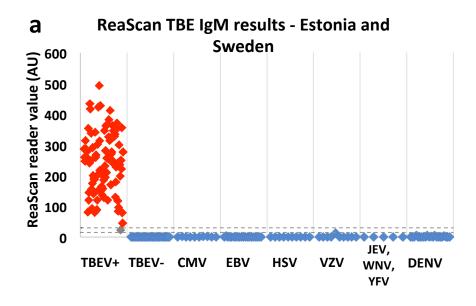





## Reagena ReaScan® TBE IgM rapid test



 The Reagena ReaScan® TBE IgM rapid test (ReaScan TBE) was evaluated for usage in a clinical laboratory setting in five diagnostic laboratories in Estonia, Finland, Slovenia, Sweden, and the Netherlands.








## Reagena ReaScan® TBE IgM rapid test









### RAPID COMMUNICATIONS

### Distinction between serological responses following tick-borne encephalitis virus (TBEV) infection vs vaccination, Sweden 2017

### Bo Albinsson1-3, Sirkka Vene1-3, Lars Rombo4-5, Jonas Blomberg1-6, Åke Lundkvist1, Bengt Rönnberg1-3

- 1. Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, Uppsala, Sweden
- Laboratory of Clinical Microbiology, Uppsala University Hospital, Uppsala, Sweden
   The Public Health Agency of Sweden, Solna, Stockholm, Sweden
- Department of Infectious diseases, Eskilstuna, Sweden
- Clinical Research Centre, Sormland county council, Uppsala University, Uppsala, Sweden
- 6. Department of Medical Sciences, Uppsala University, Uppsala, Sweden

### Correspondence: Åke Lundkvist (ake.lundkvist@imbim.uu.se)

Citation style for this article:
Albinsson Bo, Vene Sirkka, Rombo Lars, Biomberg Jonas, Lundkvist Åke, Rönnberg Bengt. Distinction behveen serological responses following tick-borne encephalitis virus (TBRV) infection vs vaccination, Sweden 2017. Euro Surveill. 2018;23(3):pil—17-00838. https://doi.org/10.2807/1560-7917.CS.2018.23-3.37-00838.

Article submitted on 18 Dec 2017 / accepted on 18 Jan 2018 / published on 18 Jan 2018

Tick-borne encephalitis virus (TBEV) is an important European vaccine-preventable pathogen. Discrimination of vaccine-induced antibodies from those elicited by infection is important. We studied anti-TBEV IgM/IgG responses, including avidity and neutralisation, by multiplex serology in 50 TBEV patients and 50 TBEV vaccinees. Infection induced antibodies reactive to both whole virus (WV) and non-structural protein 1 (NS1) in 48 clinical cases, whereas 47 TBEV vaccinees had WV, but not NS1 antibodies, enabling efficient discrimination of infection/ vaccination

Sweden reported record-high numbers of tick-borne encephalitis (TBE), 391 cases, during 2017. TBE diagnosis is mainly performed by serology, improved serology should distinguish TBE virus (TBEV) antibodies Induced by Infection from those Induced by vaccination: It should control for cross-reactions and detect suboptimal vaccinations. The major surrogate indicator of protection, neutralising antibodies measured by neutralisation test (NT), requires a biosafety level 3 facility and is time-consuming. We aimed to address all these issues. In this study, we made use of the fact that TBEV NS1 antigen is not present in existing vaccine preparations; thus vaccinees are not expected to develop a serological response against NS1, so that anti-TBE antibodies induced by infection can be distinguished from those induced by vaccination.

### Proof of concept study of immune responses after infection or vaccination

### Serum samples

We analysed 50 serum samples drawn between 2011 and 2014 from patients in the region of Uppsala Akademiska hospital, Sweden, with clinical suspicion of acute TBEV Infection. All had a serological profile consistent with current or recent TBEV Infection, i.e. high levels of TBEV-reactive IgM and low or borderline levels of TBEV-reactive IgG in a commercial assay (Siemens Healthcare Diagnostics AG, Marburg, Germany), and were confirmed as TBEV IgM-positive by another commercial test (Reagena OY, Tolvala, Finland)

We also analysed 150 serum samples from 50 healthy Individuals who were vaccinated in Eskilstuna, Sweden, between 2012 and 2013 with TBEV vaccine (FSME-Immun, Pflzer, New York, United States (US)). Three serum samples per vaccinee were drawn: on day o, the day of the first dose (n=50), on day 120 after the first vaccination dose, i.e. a minimum of 30 days after at least two doses (n=50), and on day 390 after the first vaccine dose, 30 days after at least three doses (n = 50). For all time points after the first dose, a difference of +/- 2 days was accepted.

### Suspension multiplex immunoassay reactivity in acute-phase TBE patients vs TBÉ vaccinees

TBEV whole virus (WV) antigen was purchased from Jena Bioscience, Jena, Germany (Cat. No. PR-BA112) and TBEV non-structural protein 1 (NS1) antigen from Native Antigen Company, Heyford Park, United Kingdom (Cat. No. TBEV-NS1-100). The TBEV-specific suspension multiplex immunoassay (SMIA) was performed as earlier described for the more comprehensive Flavivirus suspension multiplex immunoassay (FSMIA) [1]. Briefly, each antigen was coupled to carboxylated differentially colour-marked magnetic microspheres using carbodlimide. For IgG determination, serum diluted 1:50 was added to 96-well microtitre plates. Vortexed and

www.eurosurvelllance.org

NEECTION ECOLOGY & EPIDEMIOLOGY 2019, VOL. 9, 1696132 https://doi.org/10.1080/20008686.2019.1696132



ARTICLE



### Antibody responses to tick-borne encephalitis virus non-structural protein 1 and whole virus antigen-a new tool in the assessment of suspected vaccine failure patients

Bo Albinsson (54b, Bengt Rönnberg (54b, Sirkka Vene\*c and Åke Lundkvist (54

\*Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden; \*Laboratory of Ginical Microbiology, Uppsala University Hospital, Uppsala, Sweden; 'Department of Microbiology, The Public Health Agency of Sweden, Solna, Sweden

We report a new tool for improved serological diagnostics in suspected tick-borne encephalitis (TBE) vaccine failure cases. Due to an increase in the incidence of disease as well as the number of vaccinees, specific and simplified diagnostic methods are needed. Antibody responses to TBE-virus (TBEV) non-structural protein 1 (NS1) are detectable post TBEV infection but not post vaccination. We have used samples from 14 previously confirmed Swedish TBEV vaccine failure patients to study antibody responses against NS1 and whole virus antigens, respectively. Our conclusion is that the detection of antibodies directed to TBEV NS1 antigen is a useful tool to considerably simplify and improve the quality in investigations regarding suspected TBEV infection in vaccinated patients.

### ARTICLE HISTORY

Received 3 July 2019 Accepted 14 October 2019

#### KEYWORDS

Tick-borne encephalitis (TBE); vaccine failure; vaccine breakthrough: vaccine-preventable diseases; vaccines and detection; serology; diagnostics

#### Introduction

Long-term neurological sequelae and case fatalities can occur in tick-borne encephalitis (TBE) patients [1,2], but also mild cases are probably common and often remain undiagnosed. The disease typically follows a biphasic pattern with flu-like symptoms in the first phase and a second phase with symptoms ranging from meningitis to encephalitis. Transmission to humans occurs almost exclusively from tick bites, although viral transmission via milk products has been shown.

In the second phase of the disease, when neurological symptoms are present, laboratory diagnosis is highly dependent on the detection of TBE-virus (TBEV)specific IgM and IgG in blood and/or cerebrospinal fluid (CSF) [3]. Viral RNA can normally be found in patient samples only during the early first phase of the disease. Immune-compromised patients with delayed antibody responses may have a prolonged viremic phase that, in rare cases, enables TBEV-RNA detection.

TBE is an important and growing public health problem in Europe; France reported a marked increase in TBE cases in 2016, and in Finland, the number of TBE cases has not only more than doubled during the last decade, but the virus has also spread to new geographical areas. The Netherlands, previously TBE-free, most recently reported its emergence. In Sweden, the

number of notified cases is increasing and reached a record-high in 2017 (391 cases), with almost the same level in 2018 (385 cases) (Figure 1) [4]. Effective vaccines are available, but vaccine failures occur [5,6]. The number of sold vaccine doses has also increased during the same period and reached 1.2 million doses in 2018, which is double the amount sold the years before (Figure 1). The commercial or in-house serological tests that are commonly used are not designed to separate antibody responses induced by infection from those induced by vaccination, and interpretation of serological patterns is most challenging. This is even more the case if the patient has been vaccinated in close proximity to the onset of suspected TBE illness during the TBE season, As TBE vaccination is becoming more common, this diagnostic problem will increase even further. A diagnostic tool that can distinguish antibody responses induced by TBEV infection from those induced by vaccination is thus highly desirable.

Our recently published method for detection of nonstructural protein 1 (NS1) and whole virus (WV) antibodies to TBEV using TBEV suspension multiplex immunoassay (SMIA) was proven to efficiently differentiate between antibodies induced by infection and vaccination. All but two (48/50) samples from TBEV-infected patients had antibodies to NS-1 antigen as compared to only three serum samples from the vaccinated group (3/50). In one

CONTACT Âle Lundkvist @ akeJundkvist@imbim.uu.se @ Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.07), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

### RESEARCH

### Multi-laboratory evaluation of ReaScan TBE IgM rapid test, 2016 to 2017

Bo Albinsson<sup>1,2</sup>, Anu E. Jääskeläinen<sup>3,4</sup>, Kairi Värv<sup>1,5</sup>, Mąteja Jelovšek<sup>a</sup>, Corine GeurtsvanKessel<sup>a</sup>, Sirkka Vene<sup>1</sup>, Josef D. Järhult<sup>7</sup>, Chantal Reusken<sup>4,5</sup>, Irina Golovljova<sup>1,5</sup>, Tatjana Avšič-Županc<sup>a</sup>, Olli Vapalahti<sup>3,4,9</sup>, Åke Lundkvist<sup>1</sup>

- 1. Department of Medical Biochemistry and Microbiology, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
- 2. Laboratory of Clinical Microbiology, Uppsala, Sweden
- 3. Department of Virology, University of Helsinki, Helsinki, Finland
- 4. Helsinki University Hospital Laboratory Services (HUSLAB), Department of Virology and Immunology, Helsinki, Finland
- Department of Virology and Immunology, National Institute for Health Development, Tallinn, Estonia
- WHO Collaborating Centre for Arbovirus and Viral Haemorrhagic Fever Reference and Research, Department of Virology, Erasmus University Medical Centre, Rotterdam, the Netherlands
  Department of Medical Sciences, Zoonosis Science Centre, Uppsala University, Uppsala, Sweden
- 8. Institute for Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- 9. Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- 10. Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands

### Correspondence: Åke Lundkvist (ake.lundkvist@imbim.uu.se)

Citation style for this articles. Additionally a style of the style for this articles. Additions on Bo., Jas kalainen Anu E., Värv Kairi, Jetovšek Mateja, Gourtsvan Kessel Corine, Vene Sirkka, Järhult Josef D., Beusken Chantal, Golovijova Irina, Avštit-Zupanc Tatjana, Vapatahti Otti, Lundkvist Ake. Mutti-laboratory ovaluation of ReaScan TBE IgM rapid test, 2016 to 2017. Euro Surveill. 2020;35(12):pii-1900427. https://doi.org/10.2807/1560-7917.ES.2020.25.12.1900427

Article submitted on 28 lun 2010 / accepted on 14 Feb 2020 / published on 26 Mar 2020

Background: Tick-borne encephalitis (TBE) is a potentially severe neurological disease caused by TBE virus (TBEV). In Europe and Asia, TBEV infection has become a growing public health concern and requires fast and specific detection. Alm: In this observational study, we evaluated a rapid TBE IgM test, ReaScan TBE, for usage in a clinical laboratory setting. Methods: Patient sera found negative or positive for TBEV by serological and/or molecular methods in diagnostic laboratories of five European countries endemic for TBEV (Estonia. Finland, Slovenia, the Netherlands and Sweden) were used to assess the sensitivity and specificity of the test. The patients' diagnoses were based on other commercial or quality assured in-house assays, i.e. each laboratory's conventional routine methods. For specificity analysis, serum samples from patients with infections known to cause problems in serology were employed. These samples tested positive for e.g. Epstein-Barr virus, cytomegalovirus and Anaplasma phagocytophilum, or for flaviviruses other than TBEV, i.e. dengue, Japanese encephalitis, West Nile and Zika viruses. Samples from individuals vaccinated against flaviviruses other than TBEV were also included. Altogether, 172 serum samples from patients with acute TBE and 306 TBE IgM negative samples were analysed. Results: Compared with each laboratory's conventional methods, the tested assay had similar sensitivity and specificity (99.4% and 97.7%, respectively). Samples containing potentially interfering antibodies did not cause specificity problems. Conclusion: Regarding diagnosis of acute TBEV infections, ReaScan TBE offers rapid and convenient complementary IgM detection. If used as a stand-alone, it

can provide preliminary results in a laboratory or point of care setting.

### Introduction

Tick-borne encephalitis virus (TBEV) is the most Important tick-transmitted virus causing human disease In Europe and Asia [1-4]. TBEV belongs to the genus Flavivirus, within the Flaviviridae family, and can be divided into three distinct subtypes: the European (TBEV-Eur, formerly known as Central European encephalitis virus), the Siberian (TBEV-Sib, formerly known as Siberian encephalitis virus), and the Far-Eastern (TBEV-FE, formerly known as Russian Spring Summer encephalitis virus) subtypes [3]. Recently, two new subtypes of TBEV (Himalayan and Balkalian) have been characterised [5,6]. Several studies suggest that the case fatality rate for TBE caused by TBEV-Eur Is 0-4% [1,7] by TBEV-SIb 2-3% [1,7] and by TBEV-FE 6-40% [1,3,7,8]. However, according to Ruzek et al., 2019 [9] the overall TBE mortality rate in Russia is approximately 2% (i.e. TBEV-SIb and TBEV-FE Infections). Thus, data on fatality rates of TBEV are not comprehensive since, aside from the infecting subtype, other factors (such as healthcare system efficiency, population genetics or living conditions) may come into play. TBEV is maintained in ticks and in their wild vertebrate hosts in forested natural foci [10]. The main reservoir hosts are found among small mammals (e.g. rodents, Insectivores), while larger animals (e.g. deer), despite being important feeding hosts for ticks, do not seem to play any considerable role in the maintenance of the virus within its foci [2.11].

www.eurosurvelllance.org

## And then came Covid-19...



## Acknowledgements

- Bo Albinsson
- Bengt Rönnberg
- Sirkka Vene

• Thank you!

