

SURVEILLANCE REPORT

Surveillance of antimicrobial resistance in Europe 2018

a X

Щp

www.ecdc.europa.eu

Surveillance of antimicrobial resistance in Europe

Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net)

2018

The European Centre for Disease Prevention and Control (ECDC) wishes to thank all EARS-Net participating laboratories and hospitals in the EU/EEA countries for providing data for this report.

Furthermore, the National Focal Points for Antimicrobial Resistance and all the Operational Contact Points for Epidemiology, for Microbiology and for TESSy that contribute to EARS-Net are acknowledged for facilitating data transfer and providing valuable comments for this report. John Stelling (WHONET representative) is acknowledged for providing technical support to the countries during data preparation. Carlo Gagliotti (ECDC consultant) is acknowledged for his work in analysing data for the report. In addition, ECDC wishes to thank the EARS-Net Disease Network Coordination Committee: Hanna Billström, Tim Eckmanns, Vincent Jarlier, Jos Monen, Stephen Murchan, Gunnar Skov Simonsen, Maja Šubelj, Arjana Tambić, Dorota Żabicka, Helena Žemličková, Christian Giske (observer, EUCAST), Gunnar Kahlmeter (observer, ESCMID), Marek Gniadkowski (observer ESGARS) and Danilo Lo Fo Wong (observer, WHO Regional Office for Europe) for providing scientific advice during the production of the report.

Suggested citation: European Centre for Disease Prevention and Control. Surveillance of antimicrobial resistance in Europe 2018. Stockholm: ECDC; 2019.

Stockholm, November 2019

ISBN 978-92-9498-387-9 DOI 10.2900/22212 Catalogue number TQ-AZ-19-001-EN-N

© European Centre for Disease Prevention and Control, 2019.

Cover picture © istockphoto

Reproduction is authorised, provided the source is acknowledged. For any use or reproduction of photos or other material that is not under the EU copyright, permission must be sought directly from the copyright holders.

Contents

Summary	
1 Introduction	
Antimicrobial resistance	
EARS-Net	
2 EARS-Net data collection and analysis	
Data analysis	
Data validity	
3 Antimicrobial resistance in Europe 2015 to 2018	
3.1 Escherichia coli	7
3.2 Klebsiella pneumoniae	19
3.3 Pseudomonas aeruginosa	
3.4 Acinetobacter species	
3.5 Streptococcus pneumoniae	
3.6 Staphylococcus aureus	
3.7 Enterococci	
References	61
Annex	
National institutions/organisations participating in EARS-Net	
Country summaries	

List of tables

Table 2.1. Self-assessed national coverage and sample representativeness, and blood culture sets/1000 patient-days. EU/EEA countries, 2018 (or latest available data)
Table 3.1. <i>Escherichia coli</i> . Total number of invasive isolates tested (N) and percentage resistance (%) per phenotype, EU/EEA countries, 20189
Table 3.2. Escherichia coli. Total number of invasive isolates tested (N) and percentage with resistance to aminopenicillins (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018
Table 3.3. Escherichia coli. Total number of invasive isolates tested (N) and percentage with resistance to fluoroquinolones (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018 14
Table 3.4. Escherichia coli. Total number of invasive isolates tested (N) and percentage with resistance to third-generation cephalosporins (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018 15
Table 3.5. Escherichia coli. Total number of invasive isolates tested (N) and percentage with resistance to aminoglycosides (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018
Table 3.6. Escherichia coli. Total number of invasive isolates tested (N) and percentage with resistance to carbapenems (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018 17
Table 3.7. <i>Escherichia coli</i> . Total number of invasive isolates tested (N) and percentage with combined resistance to fluoroquinolones, third-generation cephalosporins and aminoglycosides (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 201818
Table 3.8. Klebsiella pneumoniae. Total number of invasive isolates tested (N) and percentage resistance (%) per phenotype, EU/EEA countries, 2018
Table 3.9. Klebsiella pneumoniae. Total number of invasive isolates tested (N) and percentage with resistance to fluoroquinolones (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018 25
Table 3.10. Klebsiella pneumoniae. Total number of invasive isolates tested (N) and percentage with resistance to third-generation cephalosporins (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018
Table 3.11. Klebsiella pneumoniae. Total number of invasive isolates tested (N) and percentage with resistance to aminoglycosides (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018 27
Table 3.12. Klebsiella pneumoniae. Total number of invasive isolates tested (N) and percentage with resistance to carbapenems (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018 28
Table 3.13. Klebsiella pneumoniae. Total number of invasive isolates tested (N) and percentage with combined resistance to fluoroquinolones, third-generation cephalosporins and aminoglycosides (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018 29
Table 3.14. Pseudomonas aeruginosa. Total number of invasive isolates tested (N) and percentage resistance (%) per phenotype, EU/EEA countries, 2018
Table 3.15. <i>Pseudomonas aeruginosa</i> . Total number of invasive isolates tested (N) and percentage with resistance to piperacillin ± tazobactam (%R), including 95% confidence intervals (95%CI), EU/EEA countries, 2015 to 2018
Table 3.16. Pseudomonas aeruginosa. Total number of invasive isolates tested (N) and percentage with resistance to fluoroquinolones (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018 36
Table 3.17. <i>Pseudomonas aeruginosa</i> . Total number of invasive isolates tested (N) and percentage with resistance to ceftazidime (% R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018
Table 3.18. Pseudomonas aeruginosa. Total number of invasive isolates tested (N) and percentage with resistance to aminoglycosides (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018 38
Table 3.19. Pseudomonas aeruginosa. Total number of invasive isolates tested (N) and percentage with resistance to carbapenems (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018 39
Table 3.20. Pseudomonas aeruginosa. Total number of invasive isolates tested (N) with combined resistance (resistance to three or more antimicrobial groups among piperacillin ± tazobactam, ceftazidime, fluoroquinolones, aminoglycosides and carbapenems) including 95% confidence intervals (95% CI), by country, EU/EEA countries, 2015 to 2018
Table 3.21. Acinetobacter spp. Total number of invasive isolates tested (N) and percentage resistance (%) per phenotype, EU/EEA countries, 2018
Table 3.22. Acinetobacter spp. Total number of invasive isolates tested (N) and percentage with resistance to fluoroquinolones (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018 45
Table 3.23. Acinetobacter spp. Total number of invasive isolates tested (N) and percentage with resistance to aminoglycosides (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018 46
Table 3.24. <i>Acinetobacter</i> spp. Total number of invasive isolates tested (N) and percentage with resistance to carbapenems (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018
Table 3.25. Acinetobacter spp. Total number of invasive isolates tested (N) and percentage with combined resistance to fluoroquinolones, aminoglycosides and carbapenems (%R), including 95% confidence intervals (95% Cl), by country, EU/EEA countries, 2015 to 2018
Table 3.26. Streptococcus pneumoniae. Total number of tested isolates (N) and percentage (%) penicillin non-wild-type, including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018
Table 3.27. Streptococcus pneumoniae. Total number of tested isolates (N) and percentage resistant to macrolides (%R), including 95% confidence intervals (95% CI), by country, EU/EEA countries, 2015 to 2018

Table 3.28. <i>Streptococcus pneumoniae</i> . Total number of tested isolates (N) and percentage (%) penicillin non-wild-type and resistant to macrolides, including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018	53
Table 3.29. <i>Staphylococcus aureus.</i> Total number of invasive isolates tested (N) and percentage resistance (%) per phenotype, EU/EEA countries, 2018	54
Table 3.30. <i>Staphylococcus aureus.</i> Total number of invasive isolates tested (N) and percentage with resistance to meticillin (MRSA) including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018	56
Table 3.31. <i>Enterococcus faecalis.</i> Total number of invasive isolates tested (N) and percentage with high-level resistance to gentamicin including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018	59
Table 3.32. <i>Enterococcus faecium.</i> Total number of invasive isolates tested (N) and percentage with resistance to vancomycin, including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018	60

List of figures

Figure 3.1. <i>Escherichia coli</i> . Distribution of isolates: fully susceptible and resistant to one, two, three, four and five antimicrobial groups (among isolates tested against aminopenicillins, fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems), EU/EEA countries, 2018	8
Figure 3.2. <i>Escherichia coli</i> . Percentage (%) of invasive isolates with resistance to fluoroquinolones, by country, EU/EEA countries, 20181	0
Figure 3.3. Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, by country, EU/EEA countries, 2018	0
Figure 3.4. Escherichia coli. Percentage (%) of invasive isolates with resistance to aminoglycosides, by country, EU/EEA countries, 2018	1
Figure 3.5. <i>Escherichia coli</i> . Percentage (%) of invasive isolates with resistance to carbapenems, by country, EU/EEA countries, 2018	1
Figure 3.6. <i>Escherichia coli</i> . Percentage (%) of invasive isolates with combined resistance to third-generation cephalosporins, fluoroquinolones and aminoglycosides, by country, EU/EEA countries, 2018	2
Figure 3.7. <i>Klebsiella pneumoniae.</i> Distribution of isolates: fully susceptible and resistant to one, two, three and four antimicrobial groups (among isolates tested against fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems), EU/EEA countries, 2018	0
Figure 3.8. Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to fluoroquinolones, by country, EU/EEA countries, 20182	2
Figure 3.9. <i>Klebsiella pneumoniae</i> . Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, by country, EU/EEA countries, 2018	2
Figure 3.10. <i>Klebsiella pneumoniae</i> . Percentage (%) of invasive isolates with resistance to aminoglycosides, by country, EU/EEA countries, 2018	3
Figure 3.11. Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, by country, EU/EEA countries, 2018 2	3
Figure 3.12. <i>Klebsiella pneumoniae</i> . Percentage (%) of invasive isolates with combined resistance to fluoroquinolones, third- generation cephalosporins and aminoglycosides, by country, EU/EEA countries, 2018	4
Figure 3.13. <i>Pseudomonas aeruginosa</i> . Percentage (%) of invasive isolates with resistance to piperacillin ± tazobactam, by country, EU/EEA countries, 2018	;1
Figure 3.14. <i>Pseudomonas aeruginosa</i> . Percentage (%) of invasive isolates with resistance to fluoroquinolones, by country, EU/EEA countries, 2018	2
Figure 3.15. <i>Pseudomonas aeruginosa</i> . Percentage (%) of invasive isolates with resistance to ceftazidime, by country, EU/EEA countries, 2018	2
Figure 3.16. <i>Pseudomonas aeruginosa</i> . Percentage (%) of invasive isolates with resistance to aminoglycosides, by country, EU/EEA countries, 2018	3
Figure 3.17. <i>Pseudomonas aeruginosa</i> . Percentage (%) of invasive isolates with resistance to carbapenems, by country, EU/EEA countries, 2018	3
Figure 3.18. <i>Pseudomonas aeruginosa.</i> Percentage (%) of invasive isolates with combined resistance (resistance to three or more antimicrobial groups among piperacillin ± tazobactam, ceftazidime, fluoroquinolones, aminoglycosides and carbapenems), by country, EU/EEA countries, 2018	4
Figure 3.19. <i>Acinetobacter</i> spp. Distribution of isolates: fully susceptible and resistant to one, two and three antimicrobial groups (among isolates tested against fluoroquinolones, aminoglycosides and carbapenems), EU/EEA countries, 2018	2
Figure 3.20. <i>Acinetobacter</i> spp. Percentage (%) of invasive isolates with resistance to fluoroquinolones, by country, EU/EEA countries, 2018	3
Figure 3.21. Acinetobacter spp. Percentage (%) of invasive isolates with resistance to aminoglycosides, by country, EU/EEA countries, 2018 4	3
Figure 3.22. Acinetobacter spp. Percentage (%) of invasive isolates with resistance to carbapenems, by country, EU/EEA countries, 2018 4	4
Figure 3.23. <i>Acinetobacter</i> spp. Percentage (%) of invasive isolates with combined resistance to fluoroquinolones, aminoglycosides and carbapenems, by country, EU/EEA countries, 2018	4
Figure 3.24. <i>Streptococcus pneumoniae</i> . Percentage (%) of invasive isolates resistant to macrolides, EU/EEA countries, 2018	0
Figure 3.25. <i>Staphylococcus aureus</i> . Percentage (%) of invasive isolates with resistance to meticillin (MRSA), by country, EU/EEA countries, 2018	5
Figure 3.26. <i>Enterococcus faecalis</i> . Percentage (%) of invasive isolates with high-level resistance to gentamicin, by country, EU/EEA countries, 2018	8
Figure 3.27. Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, by country, EU/EEA countries, 2018 5	8

Abbreviations

AMR	Antimicrobial resistance
AST	Antimicrobial susceptibility testing
CAESAR	Central Asian and European Surveillance of Antimicrobial Resistance
CCRE	Carbapenem- and/or colistin-resistant Enterobacteriaceae project
CLSI	Clinical and Laboratory Standards Institute
CRE	Carbapenem-resistant Enterobacteriaceae
DALY	Disability-adjusted life years
DNA	Deoxyribonucleic acid
EARSS	European Antimicrobial Resistance Surveillance System
EARS-Net	European Antimicrobial Resistance Surveillance Network
ECDC	European Centre for Disease Prevention and Control
EEA	European Economic Area
EFSA	European Food Safety Authority
EMA	European Medicines Agency
EQA	External quality assessment
ESAC-Net	European Surveillance of Antimicrobial Consumption Network
ESBL	Extended-spectrum beta-lactamase
ESCMID	European Society of Clinical Microbiology and Infectious Diseases
EU	European Union
EUCAST	European Committee on Antimicrobial Susceptibility Testing
EURGen-Net	European Antimicrobial Resistance Genes Surveillance Network
EuSCAPE	European survey on carbapenemase-producing Enterobacteriaceae
GLASS	Global Antimicrobial Resistance Surveillance System
HAI-Net	Healthcare-associated Infections Surveillance Network
ICU	Intensive care unit
IPD	Invasive pneumococcal disease
MIC	Minimum inhibitory concentration
MRSA	Meticillin-resistant Staphylococcus aureus
OXA	Oxacillinase
PBP	Penicillin-binding protein
PCV	Pneumococcal conjugate vaccine
SIR	S- susceptible; I- susceptible, increased exposure; R -resistant
TESSy	The European Surveillance System
UK NEQAS	United Kingdom National External Quality Assessment Service for Microbiology
VRE	Vancomycin-resistant enterococci
WHO	World Health Organization

Summary

The results presented in this report are based on antimicrobial resistance (AMR) data from invasive isolates reported to the European Antimicrobial Resistance Surveillance Network (EARS-Net) by 30 European Union (EU) and European Economic Area (EEA) countries in 2019 (data referring to 2018), and on trend analyses of data reported by the participating countries for the period 2015 to 2018.

As in previous years, the AMR situation in Europe displays wide variations depending on bacterial species, antimicrobial group and geographical region. For several bacterial species—antimicrobial group combinations, a north-to-south and west-to-east gradient is evident. In general, lower resistance percentages were reported by countries in the north while higher percentages were reported in the south and east of Europe. The high variability in AMR across EU/EEA countries reinforces the scope for significant reductions through investments to strengthen current best practice.

In 2018, more than half of the Escherichia coli isolates reported to EARS-Net and more than a third of the Klebsiella pneumoniae isolates were resistant to at least one antimicrobial group under regular surveillance, and combined resistance to several antimicrobial groups was frequent. Resistance percentages were generally higher in K. pneumoniae than in E. coli. While carbapenem resistance remained rare in E. coli, several countries reported carbapenem resistance percentages above 10% for K. pneumoniae. Carbapenem resistance was also common in Pseudomonas aeruginosa and Acinetobacter species, and at higher percentages compared with K. pneumoniae. For all four gram-negative bacteria, the countries reporting the highest carbapenem resistance percentages were also among the countries reporting the highest resistance percentages for other antimicrobial groups. For most gram-negative bacterial species-antimicrobial group combinations, changes in resistance percentages between 2015 and 2018 were moderate, and resistance remained at previouslyreported high levels.

For *Streptococcus pneumoniae*, the resistance situation appeared stable, but with large inter-country variations. For *Staphylococcus aureus*, the decline in the percentage of meticillin-resistant (i.e. MRSA) isolates reported in previous years continued in 2018. Nevertheless, MRSA remains an important pathogen in the EU/EEA, as the levels of MRSA were still high in several countries, and combined resistance to other antimicrobial groups was common.

One development of particular concern was the increase in the EU/EEA population-weighted mean percentage for vancomycin-resistant *Enterococcus faecium* from 10.5% in 2015 to 17.3% in 2018. Corresponding increasing trends highlight the need for close monitoring to better understand the epidemiology, clonal diversity and risk factors associated with infection. Contrary to many other species under surveillance, no distinct geographical pattern could be seen for vancomycin-resistant *E. faecium*, as high percentages were reported from both southern, eastern and northern Europe.

The high levels of AMR for several important bacterial species-antimicrobial group combinations reported to EARS-Net for 2018 show that AMR remains a serious challenge in the EU/EEA. Despite the political prioritisation of AMR as a threat to public health and the availability of evidence-based guidance for antimicrobial stewardship, adequate microbiological capacity and infection prevention and control, it is clear that public health action to tackle the situation remains insufficient.

1 Introduction

Antimicrobial resistance

Antimicrobial resistance (AMR) is the ability of a microorganism to resist the action of one or more antimicrobial agents. The consequences can be severe, and prompt treatment with effective antimicrobials is the most important intervention to reduce the risk of poor outcome of serious infections.

AMR is considered to be one of the biggest threats to public health today, both globally [1] and in the EU/EEA region [2]. Recent estimates based on data from EARS-Net show that each year, more than 670 000 infections occur in the EU/EEA due to bacteria resistant to antibiotics, and that approximately 33 000 people die as a direct consequence of these types of infection [3]. The related cost to the healthcare systems of EU/EEA countries is around EUR 1.1 billion [4].

Acquired resistance is caused by mutations in bacterial genes, or acquisition of exogenous resistance genes carried by mobile genetic elements that can spread horizontally between bacteria. Bacteria can acquire multiple resistance mechanisms and hence become resistant to several antimicrobial agents, which is particularly problematic as it may severely limit the available treatment alternatives for the infection. The major drivers behind the occurrence and spread of AMR are the use of antimicrobial agents and the transmission of antimicrobial-resistant microorganisms between humans; between animals; and between humans, animals and the environment. While antimicrobial use exerts ecological pressure on bacteria and contributes to the emergence and selection of AMR, poor infection prevention and control practices favour the further spread of these bacteria. Prudent antimicrobial use and high standard infection control in all healthcare sectors are therefore the cornerstones of an effective response to AMR.

The problem of AMR calls for concerted efforts at country level as well as close international cooperation. In 2017, the European Commission adopted a new European One Health Action Plan against AMR to support the EU and its Member States in delivering innovative, effective and sustainable responses to AMR [2]. AMR is listed as a special health issue in Commission Decision No 1082/2013/EU of the European Parliament and of the Council dated 22 October 2013 on serious cross-border threats to health [5] and the Commission Implementing Decision (EU) 2018/945 of 22 June 2018 on the communicable diseases and related special health issues to be covered by epidemiological surveillance [6].

EARS-Net

The European Antimicrobial Resistance Surveillance Network (EARS-Net) is the main EU surveillance system

for AMR in bacteria that cause serious infections. The objective of EARS-Net is to collect, analyse and report data on AMR through a network of national surveillance systems across EU/EEA Member States and, as defined in the EARS-Net protocol, to enable action to address AMR. EARS-Net is the continuation of the European Antimicrobial Resistance Surveillance System (EARSS), which was coordinated by the Dutch National Institute for Public Health and the Environment (RIVM). Established in 1998, EARSS successfully created an international network for AMR surveillance and demonstrated how international AMR data could inform decisions and raise awareness among stakeholders and policymakers. On 1 January 2010, the administration of EARSS was transferred from RIVM to ECDC, and the network was renamed FARS-Net

All 28 EU Member States and two EEA countries (Iceland and Norway) participate in EARS-Net. The vast majority of the countries regularly report data for all bacteria and antimicrobial groups under surveillance. The number of participating laboratories has continuously increased since the initiation of the network, indicating a strengthening of national AMR surveillance systems in the EU/EEA. The widespread and continuing implementation of European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines for antibacterial susceptibility testing, and the high proportion of laboratories that participate in the annual EARS-Net external quality assessment (EQA) exercise, contribute to improved data quality and an increasing ability for EU/EEA countries to report comparable AMR data.

EARS-Net is based on a network of representatives (National Focal Points for AMR; Operational Contact Points for Epidemiology, for Microbiology and for TESSy interaction) from the EU/EEA countries who collect routine clinical antimicrobial susceptibility data from national AMR surveillance initiatives. Scientific guidance and support is provided by the EARS-Net Disease Network Coordination Committee, which is composed of individual experts elected among the nominated National Focal Points and Operational Contact Points, and completed by observers from other organisations involved in AMR surveillance. EARS-Net activities are coordinated in close collaboration with two other major ECDC surveillance networks: the European Surveillance of Antimicrobial Consumption Network (ESAC-Net) and the Healthcare-associated Infections Surveillance Network (HAI-Net). EARS-Net also cooperates with the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) and in particular with EUCAST, which is supported by ECDC and ESCMID.

Through close collaboration and by using compatible methodology, the Central Asian and European Surveillance of Antimicrobial Resistance (CAESAR) Network, coordinated by the World Health Organization's Regional Office for Europe (WHO Europe), complements EARS-Net in non-EU/EEA countries to obtain a pan-European overview of the AMR situation [7] in line with the WHO European strategic action plan on antibiotic resistance [8]. Through WHO Europe, ECDC also provides data from EARS-Net to the WHO Global Antimicrobial Resistance Surveillance System (GLASS) [9] to support the WHO Global Action Plan on Antimicrobial Resistance [1].

2 EARS-Net data collection and analysis

A total of 30 countries, including all EU Member States and two EEA countries (Iceland and Norway), reported AMR data for 2018 to EARS-Net before the end of August 2019. Countries provided data for all eight species under surveillance, with the exception of Greece which did not report data on *Streptococcus pneumoniae*.

Only data from invasive (blood and cerebrospinal fluid) isolates are included in EARS-Net. This restriction aims to limit the impact of different sampling frames that would otherwise confound the data analysis if isolates from all anatomical sites were accepted. The panels of species/antimicrobial agent combinations under surveillance are defined in the EARS-Net reporting protocol [10]. In addition, the EUCAST guidelines for detection of resistance mechanisms and specific types of resistance of clinical and/or epidemiological importance describe the mechanisms of resistance and recommend methods of detection for key EARS-Net species-antimicrobial group combinations [11].

Routine antimicrobial susceptibility testing (AST) results are collected from clinical laboratories by the national network representatives in each participating country. National data are uploaded directly to The European Surveillance System (TESSy) at ECDC on an annual basis. Data presented by EARS-Net might diverge slightly from the data presented by the countries themselves, as analysis algorithms and population coverage might differ.

Data analysis

Susceptibility test categories

For the analysis, an isolate was considered resistant to an antimicrobial agent when tested and interpreted as resistant (R) in accordance with the clinical breakpoint criteria used by the local laboratory. For *S. pneumoniae*, the term penicillin non-wild-type is used in this report, referring to *S. pneumoniae* isolates reported by the local laboratories as 'susceptible, increased exposure' (I) or resistant (R) to penicillin, assuming MICs to benzylpenicillin above those of wild-type isolates, i.e. >0.06 mg/L [12]. Laboratories not using EUCAST clinical breakpoints might define the cut-off values for the susceptibility categories differently.

EARS-Net encourages the use of EUCAST breakpoints, but results based on other interpretive criteria used by the reporting countries were accepted for the analysis. The use of EUCAST breakpoints has increased over the years. In 2018, approximately 89% of the participating laboratories used EUCAST, or EUCAST-harmonised, clinical breakpoints, which is an improvement on previous years and increases comparability of the reported data [13].

National percentages

As a general rule, results were reported as a resistance percentage (i.e. the percentage of R isolates out of all isolates with AST information for the specific species-antimicrobial group.) For selected analyses, a 95% confidence interval was determined.

If fewer than 10 isolates were reported for a specific species-antimicrobial group combination in a country, the resistance percentage was not calculated and the results are not displayed on the maps presented in this report.

EU/EEA population-weighted mean percentage

A population-weighted EU/EEA mean percentage was determined by multiplying the resistance percentage for each country with the corresponding national population weight and summing up the results; weights were rescaled if resistance percentages were not available for one or more countries. Annual population data were retrieved from the Eurostat online database [14].

Country weightings were used to adjust for imbalances in reporting propensity and population coverage, as the total number of reported isolates by country does not, in most cases, reflect the population size. The methodology for calculating the EU/EEA population-weighted mean percentage was adjusted in 2018 to better control for increasing differences in the national number of reported isolates. This sometimes results in differences compared with the EU/EEA population-weighted means provided in reports published before 2018.

Trend analyses

The statistical significance of temporal trends in resistance percentages by country and for the EU/EEA population-weighted mean was calculated based on data from the last four years (i.e. 2015 to 2018.) Countries reporting fewer than 20 isolates per year, or not providing data for all years within the considered period were not included in the analysis. The statistical significance of trends was assessed by a chi-square test for trend, and a p-value of ≤ 0.05 was considered significant. An additional sensitivity analysis was performed, including only laboratories that consistently reported data for the full four-year period, thus minimising selection bias when assessing the significance of the trends. This restriction might, in some cases, have resulted in a considerably lower number of isolates compared with the analysis which includes all laboratories.

Data validity

The results, both for inter-country comparisons and in some cases national trends, should be interpreted with

caution. Several factors may influence the estimates and may result in over- as well as underestimation of resistance percentages. Key indicators of the population coverage, data representativeness and comparability are presented in the country summary sheets (see Annex), and summarised below.

In 2018, data validity, reported as sample representativeness by the National Focal Points for AMR and/or Operational Contact Points for Epidemiology, for Microbiology and for TESSy that contribute to EARS-Net, was generally assessed as high. The estimated national population coverage of the data reported to EARS-Net varied between 11% and 100%, with more than half of the countries reporting a population coverage of 80% or higher. A sentinel system without full national coverage does not necessarily imply poor data representativeness as long as the sample size is sufficiently large and caution is taken to avoid systematic error by restricting data collection to certain geographical areas, hospital or patient types. However, out of the seven countries reporting medium or poor population or hospital sample representativeness, most, but not all, were countries with a comparatively low population coverage (Table 2.1).

Although the reported number of blood culture sets per 1000 patient days varied substantially between countries, all but six countries indicated that the samples of reported invasive isolates were representative of the microorganisms causing invasive infections and of patient case-mix of included hospitals (Table 2.1). As the blood culture frequency is dependent on the number of reported patient bed-days, the heterogeneity of hospital admission thresholds and lengths of hospital in-patient stay in the EU/EEA may affect the results and hamper comparability of data. The impact of the large variation in use of blood cultures between countries on EARS-Net data is therefore difficult to assess. The recent ECDC point prevalence survey of healthcareassociated infections and antimicrobial use in European acute care hospitals highlights the strong link between diagnostic practices and case ascertainment of patients with healthcare-associated infection, thus confirming the need to harmonise and support diagnostic testing across EU/EEA countries [15].

The use of guidelines for clinical breakpoints varies among EU/EEA countries, and in some instances even between laboratories in the same country (see Annex). As a result, the interpretation of AST results may vary, at least for resistance mechanisms resulting in estimates close to the breakpoints. In addition, clinical breakpoints may change over time when they are revised. As quantitative data (i.e. disk diffusion zone diameters or MIC values) are not always provided by participating laboratories, only the local interpretations, reported as S, I or R, were considered for the analyses.

All laboratories providing data to EARS-Net are offered participation in an annual EQA exercise to assess the reliability of their laboratory test results. The level of performance for EQA specimens is generally high [13].

Country	Estimated national	Population sample	Hospital sample	Isolate sample	Blood culture sets/
Austria	Unknown	High	High	High	
Rolgium#	Olikilowii	Modium	High	High	24.2
Bulgaria	30	Medium	Poor	Modium	97.1 9 r
Croatia	40	High	High	High	Unknown
Citodila	00 9 c	High	High	High	UIKIIUWII
Cyprus Croch Dopublic	05	High	High	High	51.1
Czecii Kepublic	61	High	High	High	1/.0
Definidirk	100	nigii lli~b	nigii Ulab	nigii Liim	142.9
Estonia	100	Fign	HIGH	Filgri	31.9
Finiana	100	Fign	HIGH	Fign	150.1
France	21	High	High	High	105.2
Germany	27	High	Medium	High	30.8
Greece	68	High	High	Medium	Unknown
Hungary	90	High	High	High	12.2
Iceland	100	High	High	High	50.6
Ireland	100	High	High	High	57-3
Italy	36	High	High	High	55.4
Latvia	90	High	Medium	Medium	8.0
Lithuania	100	High	High	High	5.3
Luxembourg	100	High	High	High	28.2
Malta	95	High	High	High	29.2
Netherlands	65	High	High	High	Unknown
Norway	94	High	High	High	47.4
Poland	17	Medium	Medium	Medium	38.6
Portugal	97	High	High	High	206.9
Romania	11	Poor	Poor	Poor	34.0
Slovakia	64	High	High	High	23.7
Slovenia	99	High	High	High	36.8
Spain**	37	High	High	High	Unknown
Sweden	51	High	High	High	107.0
United Kingdom	Unknown	Medium	High	High	Unknown

Table 2.1. Self-assessed national coverage and sample representativeness,^a and blood culture sets/1000 patient-days. EU/EEA countries, 2018 (or latest available data)

^{a)} As estimated by the National Focal Points for AMR and/or Operational Contact Points for AMR: Estimated population coverage: Mean population coverage (%) of laboratories capable of reporting *Escherichia coli*, *Klebsiella pneumoniae*, *Staphylococcus aureus*, *Enterococcus faecalis* and *Enterococcus faecium*. Population sample representativeness High: All main geographical regions are covered and data are considered as representative of the national epidemiology; Medium: Most geographical regions are covered and data are considered of medium representativeness of the national epidemiology; Poor: Only a few geographical areas are covered and data are poorly representative of the national epidemiology; Unknown: unknown or no data provided. Hospital sample representative of the national epidemiology; Unknown: unknown or no data provided.

is partly representative of the acute care hospital distribution in the country; Poor: The hospital sample is poorly representative of the acute care hospital distribution

is party representative of the acute care hospital distribution in the country; Poor: The hospital sample is poorly representative of the acute care hospital distribution in the country; Unknown: Unknown or no data provided. Isolate sample representativeness High: The isolate sample is representative of microorganisms causing invasive infections and of patient case-mix of the included hospitals; Medium: The isolate sample is partly representative of microorganisms causing invasive infections and of patient case-mix of the included hospitals; Medium: The isolate sample is partly representative of microorganisms causing invasive infections and of patient case-mix of the included hospitals; Poo The isolate sample is poorly representative of microorganisms causing invasive infections and of patient case-mix of the included hospitals; Unknown: Unknown or no data provided.

[#] Not including Streptococcus pneumoniae network.

** Data from 2017.

3 Antimicrobial resistance in Europe 2015 to 2018

3.1 Escherichia coli

Escherichia coli is part of the normal intestinal microbiota in humans, but is also a common cause of severe infections. It is the most frequent cause of bloodstream infections and urinary tract infections in the EU/EEA and is involved in infections of both community and healthcare origin. In addition, it is associated with intraabdominal infections and causes neonatal meningitis.

Resistance in E. coli readily develops either through mutations, as often seen for fluoroquinolone resistance, or by acquisition of mobile genetic elements encoding resistance mechanisms, such as the production of extended spectrum beta-lactamases (ESBLs) and carbapenemases. ESBLs are enzymes that confer resistance to most beta-lactam antibiotics, including third-generation cephalosporins, and are often seen in combination with other resistance mechanisms, causing multidrug resistance. Carbapenems usually withstand the effect of ESBLs and might remain as one of the few treatment options for severe infections. An increasing threat is carbapenem resistance mediated by a range of carbapenemases, which may confer resistance to virtually all available beta-lactam antibiotics. Carbapenamase genes are often located on plasmids that can be exchanged between Enterobacteriaceae, such as E. coli, and other gram-negative bacteria.

Antimicrobial resistance

At the EU/EEA level, more than half (58.3%) of the *E. coli* isolates reported to EARS-Net for 2018 were resistant to at least one of the antimicrobial groups under regular surveillance (i.e. aminopenicillins, fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems) (Table 3.1). In 2018, the highest EU/EEA population-weighted mean resistance percentage was reported for aminopenicillins (57.4%), followed by fluoroquinolones (25.3%), third-generation cephalosporins (15.1%) and aminoglycosides (11.1%) (Tables 3.2–3.5). Resistance to carbapenems remained rare in *E. coli* (Table 3.6).

Between 2015 and 2018, there were small but significant decreasing trends in the EU/EEA population-weighted mean percentages for aminopenicillin resistance, amino-glycoside resistance and carbapenem resistance, while the EU/EEA trends for fluoroquinolone resistance and third-generation cephalosporin resistance increased significantly during the same period. When restricting the analysis to only include the laboratories that consistently reported data during all four years, only the trends for aminopenicillin and aminoglycoside resistance remained statistically significant (Tables 3.2–3.6).

Resistance to multiple antimicrobial groups was common. Among the resistant phenotypes, resistance to aminopenicillins, both as single resistance or in combination with other antimicrobial groups, was the most common at the EU/EEA level (Table 3.1). In 2018, the percentage of combined resistance, measured as resistance to fluoroquinolones, third-generation cephalosporins and aminoglycosides, was 6.2% (EU/EEA populationweighted mean) and did not significantly change during the period 2015–2018 (Table 3.7).

With the exception of carbapenem resistance, large inter-country variations were noted for all antimicrobial groups under regular surveillance, with generally higher resistance percentages reported from southern and eastern Europe than from northern Europe (Figures 3.2–3.6). Inter-country differences were also present between the proportions of isolates that were fully susceptible to the antimicrobial groups included (Figure 3.1).

Discussion and conclusion

The recent ECDC study on the health burden of AMR based on EARS-Net data from 2015 showed that infections caused by antimicrobial-resistant E. coli proportionally contributed the most to the burden of AMR in the EU/EEA, both as number of cases and number of attributable deaths [3]. With very little or no reduction evident in the EU/EEA antimicrobial resistance levels reported to EARS-Net between 2015 and 2018, it is clear that antimicrobial resistance in E. coli remains a major public health problem and that enhanced containment efforts are needed to reduce the health-related burden of these types of infection. As the ECDC study on the health burden of AMR estimated that more than half of the infections with resistant E. coli occurred in the community, interventions to reduce the burden should not be restricted to hospital settings, but should also target primary and community care.

Use of broad-spectrum antimicrobials is a known risk factor for the colonisation and spread of antimicrobial-resistant Enterobacteriaceae, including E. coli. Associations between EARS-Net national E. coli resistance levels and national antimicrobial consumption in both the hospital and community sector have been reported [16]. The latest data from the European Surveillance of Antimicrobial Consumption Network (ESAC-Net) show large inter-country variations in the use of broad-spectrum antimicrobials [17], indicating a need for increased focus on antimicrobial stewardship [18] and room for further reductions in antimicrobial consumption. In a recent survey, a majority of EU/EEA countries reported having initiated work towards establishing objectives and targets for the reduction of antibiotic use in humans, often in the context of developing a national action plan for AMR. However, only a few countries had published targets in 2017 [19], and a minority had identified specific funding sources to implement their national action plans [4].

Although carbapenem-resistant isolates were rarely reported among the invasive E. coli isolates included in EARS-Net, continued and close monitoring of this type of resistance remains essential. Results from the European Antimicrobial Resistance Genes Surveillance Network (EURGen-Net) and its predecessor the European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE) show that the general situation for carbapenem-resistant Enterobacteriaceae (CRE), including E. coli, worsened in many EU/EEA countries between 2010 and 2018 [20]. In addition, results from the Central Asian and European Surveillance of Antimicrobial Resistance network (CAESAR), coordinated by WHO Europe and monitoring AMR in non-EU/EEA European countries, report the occurrence of carbapenem-resistant E. coli in several countries EU/EEA bordering countries [7]. An increase in invasive infections caused by carbapenemresistant *E. coli* would have severe consequences on the burden of AMR in the EU/EEA, as *E. coli* remains the most common cause of bloodstream infections and CRE spreads easily in healthcare settings as well as in the community.

CRE infections are associated with high mortality, primarily due to delays in administration of effective treatment and the limited availability of treatment options. The September 2019 update of ECDC's rapid risk assessment on CRE highlights the need for high standards in infection prevention and control, combined with adequate microbiological capacity to detect and prevent further spread [21]. To address the need for enhanced CRE surveillance and complement the phenotypic-based surveillance data available from EARS-Net, a carbapenem- and/or colistin-resistant Enterobacteriaceae (CCRE)

Figure 3.1. *Escherichia coli*. Distribution of isolates: fully susceptible and resistant to one, two, three, four and five antimicrobial groups (among isolates tested against aminopenicillins, fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems), EU/EEA countries, 2018

Data are only displayed for countries providing this information for 50% or more of the isolates.

* Only data from isolates tested against all included antimicrobial groups (aminopenicillins, fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems) were included in the analysis.

project has been incorporated into EURGen-Net for the period 2018 to 2020 [22]. The results of this project will provide information on the prevalence and distribution of carbapenemases, and contribute to a better understanding of the dissemination of CRE in Europe and the risk factors associated with CRE infections.

Trends in fluoroquinolone resistance may have been influenced by the fact that, in 2016, EUCAST lowered its clinical breakpoints for several fluoroquinolones in Enterobacteriaceae [23]. As EARS-Net bases its results on SIR interpretations¹, it is not possible to assess when or to what degree this change has been implemented by participating laboratories, and how these changes have influenced the results. As a consequence, trend analyses for fluoroquinolone resistance should be interpreted with caution. As high resistance levels have been reported in *E. coli* isolates from food-producing animals in Europe, including the rare occurrence of isolates with carbapenemase production [24], the need to ensure cross-sectoral collaboration between the veterinary and food production sectors is essential. This work is underpinned by the European Commission's 'One Health' approach, which addresses resistance in both humans and animals. ECDC is working closely with the European Food Safety Authority (EFSA) and the European Medicines Agency (EMA) to better understand the interrelationship between antimicrobial use and antimicrobial resistance in humans and animals across Europe.

1 S- susceptible; I- susceptible, increased exposure; R -resistant

Table 3.1. Escherichia coli. Total number of invasive isolates tested (N)* and percentage resistance (%) per phenotype, EU/EEA countries, 2018

Resistance pattern	Number of isolates	Percentage (%) of total**
Fully susceptible	49905	41.7
Single resistance (to indicated antimicrobial group)		
Total (all single resistance)	41 526	34.7
Aminopenicillins	38093	31.8
Fluoroquinolones	3 2 1 1	2.7
Other antimicrobial groups	222	0.2
Resistance to two antimicrobial groups		
Total (all two-group combinations)	13056	10.9
Aminopenicillins + fluoroquinolones	7964	6.6
Aminopenicillins + third-generation cephalosporins	2894	2.4
Aminopenicillins + aminoglycosides	2 0 3 9	1.7
Other antimicrobial group combinations	159	0.1
Resistance to three antimicrobial groups		
Total (all three-group combinations)	9335	7.8
Aminopenicillins + third-generation cephalosporins + fluoroquinolones	5967	5.0
Aminopenicillins + fluoroquinolones + aminoglycosides	2814	2.3
Other antimicrobial group combinations	554	0.5
Resistance to four antimicrobial groups		
Total (all four-group combinations)	5938	5.0
Aminopenicillins + third-generation cephalosporins + fluoroquinolones + aminoglycosides	5904	4.9
Other antimicrobial group combinations	34	<0.1
Resistance to five antimicrobial groups		
$\label{eq:main_eq} Aminopenicillins + third-generation \ cephalosporins + fluoroquinolones + aminogly cosides + carbapenems$	40	<0.1

Only resistance combinations >1% of the total are specified.

* Only isolates with complete susceptibility information for aminopenicillins, fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems were included in the analysis.

** Not adjusted for population differences in the reporting countries.

< 1%
1% to 5%
5% to (10%)
25% to (50%)
25%
No data reported or fewer than to isolates
Not included

Figure 3.2. *Escherichia coli*. Percentage (%) of invasive isolates with resistance to fluoroquinolones, by country, EU/EEA countries, 2018

Figure 3.3. *Escherichia coli*. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, by country, EU/EEA countries, 2018

Figure 3.4. Escherichia coli. Percentage (%) of invasive isolates with resistance to aminoglycosides, by country, EU/EEA countries, 2018

Figure 3.6. *Escherichia coli*. Percentage (%) of invasive isolates with combined resistance to third-generation cephalosporins, fluoroquinolones and aminoglycosides, by country, EU/EEA countries, 2018

Countries	2015			2016			2017			2018			Trend
Country	N	%R	(95%Cl)	N	%R	(95%Cl)	N	%R	(95%Cl)	N	%R	(95%Cl)	2015- 2018*
Finland	2 4 7 2	36.0	(34-38)	2690	35.8	(34-38)	2874	35.2	(33-37)	3129	35.3	(34-37)	
Norway	3299	45.8	(44-48)	3 6 1 5	42.9	(41-45)	3731	42.2	(41-44)	3880	42.3	(41-44)	\downarrow
Estonia	196	47.4	(40-55)	471	46.7	(42-51)	439	47.8	(43-53)	457	43.5	(39-48)	
Netherlands	5376	47.2	(46-49)	6394	45.9	(45-47)	6684	45.9	(45-47)	7 0 1 3	45.6	(44-47)	
Denmark	4594	45.3	(44-47)	4698	45.0	(44-46)	4885	45.6	(44-47)	5383	46.0	(45-47)	
Germany	8 3 5 8	49.4	(48-50)	15957	49.0	(48-50)	21646	48.9	(48-50)	20369	48.9	(48-50)	
Iceland	173	44.5	(37-52)	192	43.8	(37-51)	213	41.3	(35-48)	198	49.0	(42-56)	
Austria	4880	49.9	(48-51)	5094	50.5	(49-52)	5188	49.5	(48-51)	5 4 5 6	50.7	(49-52)	
Slovenia	1326	54.8	(52-58)	1420	57.1	(54-60)	1435	51.6	(49-54)	1668	53.5	(51-56)	
Czech Republic	3172	54.3	(53-56)	3 0 5 5	55.1	(53-57)	3198	53.0	(51-55)	3640	54.2	(53-56)	
Portugal	5177	57.8	(56-59)	5772	59.2	(58-61)	6245	56.2	(55-57)	5895	55.1	(54-56)	Ŷ
Luxembourg	347	60.2	(55-65)	419	53.2	(48-58)	433	55.9	(51-61)	420	55.2	(50-60)	
France	10946	57.0	(56-58)	11248	57.2	(56-58)	13293	55.6	(55-56)	12553	55.6	(55-56)	Ť
Belgium	2674	58.0	(56-60)	3736	58.0	(56-60)	4669	57.5	(56-59)	4445	55.8	(54-57)	↓ #
Latvia	192	53.6	(46-61)	247	55.1	(49-61)	202	60.4	(53-67)	347	56.2	(51-61)	
EU/EEA (population-weighted mean)	77813	58.9	(59-59)	107383	59.0	(59-59)	125038	58.7	(58-59)	131 969	57.4	(57-58)	Ŷ
Greece	1079	56.1	(53-59)	1170	56.9	(54-60)	1306	57.5	(55-60)	1444	57.5	(55-60)	
Croatia	1042	55.3	(52-58)	1043	57.3	(54-60)	1135	58.8	(56-62)	1214	57.7	(55-61)	
Lithuania	582	59.6	(56-64)	794	59.2	(56-63)	845	57.8	(54-61)	1106	59.0	(56-62)	
Malta	238	55.5	(49-62)	328	60.1	(55-65)	314	59.6	(54-65)	332	59.6	(54-65)	
United Kingdom	5117	65.8	(64-67)	21614	62.7	(62-63)	28647	62.5	(62-63)	29502	60.8	(60-61)	Ť
Slovakia	878	62.8	(59-66)	817	62.3	(59-66)	853	64.9	(62-68)	967	61.7	(59-65)	
Romania	259	73.0	(67-78)	376	72.3	(68-77)	494	68.2	(64-72)	542	62.2	(58-66)	\downarrow
Hungary	1970	60.6	(58-63)	1969	57.4	(55-60)	2021	60.3	(58-62)	2 3 1 2	62.7	(61-65)	1
Spain	6 4 2 7	63.9	(63-65)	6791	64.1	(63-65)	5947	62.4	(61-64)	7599	62.9	(62-64)	
Poland	346	64.7	(59-70)	1034	64.5	(62-67)	913	69.4	(66-72)	890	64.3	(61-67)	
Italy	3 3 8 5	67.4	(66-69)	3 114	66.9	(65-69)	4078	67.1	(66-69)	7533	64.5	(63-66)	1
Cyprus	123	68.3	(59-76)	149	69.1	(61-76)	156	65.4	(57-73)	151	64.9	(57-72)	
Bulgaria	143	66.4	(58-74)	186	78.0	(71-84)	203	73.9	(67-80)	287	66.6	(61-72)	
Ireland	2646	66.2	(64-68)	2990	68.1	(66-70)	2991	69.8	(68-71)	3237	67.6	(66-69)	
Sweden	396	34.1	(29-39)	-	-	(-)	-	-	(-)	-	-	(-)	N/A

Table 3.2. *Escherichia coli*. Total number of invasive isolates tested (N) and percentage with resistance to aminopenicillins (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

-: No data

* ↑ and ↓ indicate significant increasing and decreasing trends, respectively.

Country	2015			2016			2017			2018			Trend
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	2015- 2018*
Finland	4404	11.2	(10-12)	4808	11.5	(11-12)	5305	12.0	(11-13)	5043	11.4	(11-12)	
Norway	3 2 9 8	10.2	(9-11)	3611	10.9	(10-12)	3731	13.6	(12-15)	3877	12.9	(12-14)	1
Denmark	4570	11.9	(11-13)	4827	11.0	(10-12)	5123	12.8	(12-14)	5386	13.3	(12-14)	1
Netherlands	5379	13.2	(12-14)	6398	12.8	(12-14)	6685	14.2	(13-15)	7015	14.9	(14-16)	1
France	10998	17.7	(17-18)	11 2 5 1	16.7	(16-17)	13 3 2 8	15.0	(14-16)	12443	16.3	(16-17)	Ť
Iceland	162	6.8	(3-12)	178	9.6	(6-15)	199	11.6	(7-17)	192	17.2	(12-23)	1
Estonia	256	15.2	(11-20)	699	13.9	(11-17)	781	17.4	(15-20)	829	17.6	(15-20)	
United Kingdom	5812	15.6	(15-17)	22883	16.3	(16-17)	30185	17.5	(17-18)	31340	17.7	(17-18)	1
Sweden	5525	12.6	(12-14)	6947	13.7	(13-14)	5762	15.8	(15-17)	5378	18.1	(17-19)	N/A
Lithuania	583	20.6	(17-24)	790	19.7	(17-23)	849	25.2	(22-28)	1104	19.7	(17-22)	
Germany	9 0 1 9	19.4	(19-20)	17 196	19.4	(19-20)	22940	20.7	(20-21)	21485	19.8	(19-20)	
Luxembourg	347	24.2	(20-29)	418	28.9	(25-34)	433	22.9	(19-27)	418	21.8	(18-26)	
Belgium	2565	26.6	(25-28)	3854	24.5	(23-26)	4382	23.8	(23-25)	4211	21.8	(21-23)	Ť
Austria	4808	20.0	(19-21)	5278	19.8	(19-21)	5367	20.5	(19-22)	5679	21.9	(21-23)	1
Slovenia	1325	24.6	(22-27)	1420	25.6	(23-28)	1383	24.9	(23-27)	1668	22.8	(21-25)	
Ireland	2631	23.1	(21-25)	2990	22.9	(21-24)	3119	23.6	(22-25)	3238	23.9	(22-25)	
Latvia	194	27.8	(22-35)	245	27.8	(22-34)	201	30.3	(24-37)	344	24.1	(20-29)	
Czech Republic	3 165	22.6	(21-24)	3061	27.6	(26-29)	3199	24.5	(23-26)	3638	24.3	(23-26)	
EU/EEA (population-weighted mean)	90137	24.8	(24-25)	124306	25.2	(25-25)	140736	25.7	(25-26)	152966	25.3	(25-25)	↑ #
Portugal	5371	29.7	(28-31)	5783	28.9	(28-30)	6424	27.3	(26-28)	5868	25.5	(24-27)	1
Romania	371	30.7	(26-36)	418	30.6	(26-35)	518	26.4	(23-30)	646	29.1	(26-33)	
Croatia	1038	24.0	(21-27)	1041	27.9	(25-31)	1150	28.2	(26-31)	1199	30.0	(27-33)	1
Greece	1 191	30.6	(28-33)	1304	32.1	(30-35)	1464	32.9	(31-35)	1631	30.8	(29-33)	
Spain	6484	31.6	(30-33)	6793	32.8	(32-34)	5781	32.5	(31-34)	7 616	32.1	(31-33)	
Hungary	2021	29.0	(27-31)	1986	26.8	(25-29)	2 0 5 1	30.6	(29-33)	2364	33.2	(31-35)	1
Poland	1571	27.9	(26-30)	2637	33.1	(31-35)	1832	35.9	(34-38)	2567	34.7	(33-37)	1
Italy	5590	44.4	(43-46)	5950	43.3	(42-45)	6945	44.9	(44-46)	16 0 4 3	41.7	(41-42)	1
Bulgaria	204	35.3	(29-42)	237	42.2	(36-49)	247	42.1	(36-49)	292	41.8	(36-48)	
Malta	238	37.4	(31-44)	328	41.5	(36-47)	314	43.3	(38-49)	332	41.9	(37-47)	
Slovakia	894	44.2	(41-48)	826	40.4	(37-44)	882	43.2	(40-47)	969	42.1	(39-45)	
Cyprus	123	45.5	(37-55)	149	47.0	(39-55)	156	42.9	(35-51)	151	42.4	(34-51)	

 Table 3.3. Escherichia coli. Total number of invasive isolates tested (N) and percentage with resistance to fluoroquinolones (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

* $\ensuremath{\uparrow}$ and $\ensuremath{\checkmark}$ indicate significant increasing and decreasing trends, respectively.

indicates a significant trend in the overall data; when only data from laboratories consistently reporting all four years are included, no trend could be detected. N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period.

Country	2015			2016			2017			2018			Trend
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	2015- 2018*
Norway	3301	6.0	(5-7)	3617	5.6	(5-6)	3734	5.9	(5-7)	3879	6.8	(6-8)	
Netherlands	5378	5.7	(5-6)	6397	6.4	(6-7)	6684	6.2	(6-7)	7 0 1 1	7.3	(7-8)	1
Finland	4342	6.1	(5-7)	4742	6.9	(6-8)	5223	6.9	(6-8)	5020	7.6	(7-8)	1
Denmark	4561	7.5	(7-8)	4659	6.6	(6-7)	4883	6.9	(6-8)	4833	7.7	(7-8)	
Iceland	173	1.7	(0-5)	192	4.2	(2-8)	213	6.1	(3-10)	198	8.1	(5-13)	1
Sweden	5995	6.2	(6-7)	6958	8.3	(8-9)	5790	7.4	(7-8)	5390	8.3	(8-9)	N/A
Belgium	2593	9.7	(9-11)	3737	10.5	(10-12)	4672	9.7	(9-11)	4644	9.0	(8-10)	
France	11 051	11.0	(10-12)	11 313	11.2	(11-12)	13 352	10.2	(10-11)	12 614	9.6	(9-10)	1
Estonia	246	11.4	(8-16)	701	9.0	(7-11)	788	8.8	(7-11)	850	9.8	(8-12)	
Austria	4900	9.7	(9-11)	5267	10.0	(9-11)	5129	9.6	(9-10)	5672	10.2	(9-11)	
United Kingdom	5 169	11.3	(10-12)	21846	9.2	(9-10)	27925	10.3	(10-11)	28677	11.0	(11-11)	1 #
Slovenia	1326	13.7	(12-16)	1420	12.5	(11-14)	1435	12.5	(11-14)	1668	11.3	(10-13)	
Germany	9031	10.3	(10-11)	17190	11.1	(11-12)	22929	12.3	(12-13)	21517	12.2	(12-13)	1
Luxembourg	347	12.7	(9-17)	418	13.6	(10-17)	433	9.7	(7-13)	424	12.5	(10-16)	
Ireland	2638	11.4	(10-13)	2985	11.4	(10-13)	3121	12.0	(11-13)	3237	12.9	(12-14)	1
Spain	6428	11.6	(11-12)	6796	15.0	(14-16)	6027	12.8	(12-14)	7923	13.8	(13-15)	1
Portugal	5376	16.1	(15-17)	5784	16.1	(15-17)	6 4 4 1	15.6	(15-16)	5881	14.7	(14-16)	1
Croatia	1046	12.5	(11-15)	1045	14.7	(13-17)	1148	16.5	(14-19)	1 168	14.8	(13-17)	
EU/EEA (population-weighted mean)	90126	14.6	(14-15)	123 087	14.9	(15-15)	139759	14.9	(15-15)	150 989	15.1	(15-15)	↑ #
Czech Republic	3172	14.5	(13-16)	3 0 6 1	15.1	(14-16)	3199	14.2	(13-15)	3641	15.2	(14-16)	
Lithuania	581	16.0	(13-19)	795	14.7	(12-17)	852	16.8	(14-19)	1109	15.3	(13-18)	
Malta	238	11.8	(8-17)	328	14.6	(11-19)	314	15.6	(12-20)	332	15.4	(12-20)	
Poland	1 610	11.9	(10-14)	2719	13.7	(12-15)	2866	16.7	(15-18)	2620	17.6	(16-19)	1
Greece	1215	19.8	(18-22)	1304	17.6	(16-20)	1470	18.3	(16-20)	1640	19.3	(17-21)	
Romania	369	26.8	(22-32)	418	23.4	(19-28)	518	18.7	(15-22)	654	20.2	(17-23)	1
Latvia	201	17.9	(13-24)	253	24.1	(19-30)	205	22.0	(16-28)	348	20.4	(16-25)	
Hungary	2026	16.7	(15-18)	1993	16.7	(15-18)	2058	20.1	(18-22)	2370	22.6	(21-24)	1
Italy	5592	30.1	(29-31)	5938	29.8	(29-31)	7077	29.5	(28-31)	16 2 5 3	28.7	(28-29)	↓ #
Slovakia	893	30.0	(27-33)	824	29.7	(27-33)	870	30.9	(28-34)	973	30.1	(27-33)	
Cyprus	123	28.5	(21-37)	149	30.2	(23-38)	156	30.8	(24-39)	151	37.1	(29-45)	
Bulgaria	205	38.5	(32-46)	238	41.6	(35-48)	247	41.3	(35-48)	292	38.7	(33-45)	

 Table 3.4. Escherichia coli. Total number of invasive isolates tested (N) and percentage with resistance to third-generation cephalosporins (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

* $\ensuremath{\uparrow}$ and $\ensuremath{\checkmark}$ indicate significant increasing and decreasing trends, respectively.

indicates a significant trend in the overall data; when only data from laboratories consistently reporting all four years are included, no trend could be detected. N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period.

	2015			2016			2017			2018			Trend
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	2015- 2018*
Finland	4135	5.4	(5-6)	4 5 1 9	4.9	(4-6)	4982	5.0	(4-6)	4815	4.3	(4-5)	1
Norway	3301	6.0	(5-7)	3 6 1 4	5.5	(5-6)	3732	7.2	(6-8)	3880	5.7	(5-7)	
Denmark	4591	6.8	(6-8)	4846	6.1	(5-7)	5122	6.0	(5-7)	5393	5.7	(5-6)	Ť
Iceland	173	2.9	(1-7)	192	3.6	(1-7)	213	5.6	(3-10)	197	6.1	(3-10)	
Netherlands	5378	6.0	(5-7)	6397	6.2	(6-7)	6686	5.6	(5-6)	7015	6.2	(6-7)	
Estonia	257	9.3	(6-14)	702	7.4	(6-10)	786	5.7	(4-8)	849	6.2	(5-8)	
Germany	9029	7.1	(7-8)	17 0 2 3	7.0	(7-7)	22 478	7.0	(7-7)	21474	6.9	(7-7)	
Luxembourg	347	8.9	(6-12)	418	9.1	(7-12)	433	10.4	(8-14)	423	7.3	(5-10)	
Belgium	2286	8.4	(7-10)	3 4 9 9	8.4	(8-9)	3769	8.1	(7-9)	3822	7.4	(7-8)	
France	11 055	8.2	(8-9)	11 135	7.9	(7-8)	13103	7.0	(7-7)	12 2 8 3	7.4	(7-8)	1
Sweden	5761	6.4	(6-7)	6949	7.2	(7-8)	5758	6.5	(6-7)	5378	7.7	(7-8)	N/A
Lithuania	583	10.1	(8-13)	791	8.0	(6-10)	848	8.3	(6-10)	1103	7.9	(6-10)	
Austria	4884	7.0	(6-8)	5248	7.8	(7-9)	5 3 1 8	7.7	(7-8)	5 616	8.2	(8-9)	1
Latvia	191	14.1	(10-20)	244	12.7	(9-18)	201	13.4	(9-19)	348	8.9	(6-12)	
Slovenia	1326	12.9	(11-15)	1420	10.6	(9-12)	1435	11.4	(10-13)	1668	9.4	(8-11)	1
Czech Republic	3172	11.3	(10-13)	3061	12.2	(11-13)	3199	10.7	(10-12)	3643	9.5	(9-10)	1
Malta	238	12.2	(8-17)	328	10.4	(7-14)	314	10.8	(8-15)	332	9.9	(7-14)	
United Kingdom	6 0 5 2	9.9	(9-11)	23166	9.9	(9-10)	30739	10.0	(10-10)	32 119	10.5	(10-11)	1
EU/EEA (population-weighted mean)	90 0 50	11.6	(11-12)	123625	11.6	(11-12)	140962	11.4	(11-12)	152 846	11.1	(11-11)	1
Ireland	2646	11.8	(11-13)	2991	11.2	(10-12)	3123	11.9	(11-13)	3238	11.7	(11-13)	
Portugal	5372	13.8	(13-15)	5765	13.1	(12-14)	6387	11.9	(11-13)	5825	12.2	(11-13)	Ť
Romania	366	18.3	(14-23)	414	15.0	(12-19)	513	15.2	(12-19)	649	12.8	(10-16)	\downarrow
Spain	6489	14.7	(14-16)	6796	14.5	(14-15)	6 0 2 9	13.7	(13-15)	7924	14.1	(13-15)	
Croatia	1008	12.7	(11-15)	1027	15.7	(14-18)	1154	16.6	(15-19)	1 210	14.9	(13-17)	
Poland	1581	11.2	(10-13)	2521	13.3	(12-15)	2719	14.0	(13-15)	2449	15.1	(14-17)	1
Greece	1200	16.1	(14-18)	1 301	16.8	(15-19)	1467	17.0	(15-19)	1633	15.5	(14-17)	
Italy	5408	20.2	(19-21)	6079	19.0	(18-20)	7134	18.4	(18-19)	15901	16.0	(15-17)	1
Hungary	2020	13.6	(12-15)	1992	13.3	(12-15)	2060	15.1	(14-17)	2264	17.4	(16-19)	1
Cyprus	123	13.8	(8-21)	149	16.1	(11-23)	156	21.8	(16-29)	151	19.9	(14-27)	
Slovakia	896	24.2	(21-27)	828	20.2	(17-23)	875	22.5	(20-25)	969	21.6	(19-24)	
Bulgaria	182	19.8	(14-26)	210	34.8	(28-42)	229	36.2	(30-43)	275	28.4	(23-34)	

 Table 3.5. Escherichia coli. Total number of invasive isolates tested (N) and percentage with resistance to aminoglycosides (%R), including 95 % confidence intervals (95 % CI), EU/EEA countries, 2015 to 2018

* $\ensuremath{\uparrow}$ and $\ensuremath{\downarrow}$ indicate significant increasing and decreasing trends, respectively.

* indicates a significant trend in the overall data; when only data from laboratories consistently reporting all four years are included, no trend could be detected.
N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period.

Country		2015			2016			2017		2018			Trend
Country	N	%R	(95%Cl)	N	%R	(95%Cl)	N	%R	(95%CI)	N	%R	(95%CI)	2015- 2018*
Denmark	4046	<0.1	(0-0)	4671	0.0	(0-0)	5 117	0.0	(0-0)	4640	0.0	(0-0)	
Croatia	1046	0.0	(0-0)	1045	0.0	(0-0)	1132	0.0	(0-0)	1 190	0.0	(0-0)	
Estonia	219	0.0	(0-2)	602	0.0	(0-1)	687	0.0	(0-1)	758	0.0	(0-0)	
Hungary	1922	0.0	(0-0)	1905	0.0	(0-0)	1987	0.1	(0-0)	2279	0.0	(0-0)	
Iceland	162	0.0	(0-0)	192	0.0	(0-0)	198	0.0	(0-0)	190	0.0	(0-0)	
Ireland	2 615	<0.1	(0-0)	2989	0.0	(0-0)	3 116	0.0	(0-0)	3237	0.0	(0-0)	
Lithuania	579	0.0	(0-1)	793	0.0	(0-0)	849	0.0	(0-0)	1100	0.0	(0-0)	
Latvia	192	0.0	(0-2)	246	0.0	(0-1)	203	0.0	(0-2)	346	0.0	(0-1)	
Luxembourg	347	0.0	(0-1)	418	0.0	(0-1)	433	0.0	(0-1)	424	0.0	(0-1)	
Malta	238	0.0	(0-2)	328	0.0	(0-1)	314	0.0	(0-1)	332	0.0	(0-1)	
Romania	368	1.9	(1-4)	411	1.0	(0-2)	510	0.4	(0-1)	653	0.0	(0-1)	
Slovakia	830	0.0	(0-0)	751	0.0	(0-0)	844	0.0	(0-0)	924	0.0	(0-0)	
Slovenia	1326	0.0	(0-0)	1 4 2 0	0.0	(0-0)	1435	0.0	(0-0)	1668	0.0	(0-0)	\downarrow
Finland	4 4 2 5	0.0	(0-0)	4832	0.0	(0-0)	5 3 1 5	0.0	(0-0)	5057	<0.1	(0-0)	
France	10 4 8 1	<0.1	(0-0)	10929	0.0	(0-0)	12843	0.0	(0-0)	12399	<0.1	(0-0)	
Germany	9032	<0.1	(0-0)	17196	0.0	(0-0)	22940	0.0	(0-0)	21484	<0.1	(0-0)	
Netherlands	5375	<0.1	(0-0)	6394	0.0	(0-0)	6682	0.0	(0-0)	7013	<0.1	(0-0)	
Norway	3 2 9 7	<0.1	(0-0)	3 616	0.1	(0-0)	3733	0.1	(0-0)	3879	<0.1	(0-0)	
United Kingdom	5 4 9 7	0.3	(0-0)	22762	0.0	(0-0)	30074	0.0	(0-0)	31229	<0.1	(0-0)	Ť
Spain	6399	<0.1	(0-0)	6790	0.1	(0-0)	6026	0.0	(0-0)	7924	<0.1	(0-0)	
Sweden	5307	0.1	(0-0)	6927	0.1	(0-0)	5769	0.0	(0-0)	5388	<0.1	(0-0)	N/A
Austria	4760	<0.1	(0-0)	5134	0.0	(0-0)	5227	0.0	(0-0)	5564	0.1	(0-0)	
Belgium	2588	0.0	(0-0)	3845	0.1	(0-0)	4672	0.0	(0-0)	4641	0.1	(0-0)	
Poland	1499	0.1	(0-0)	2553	0.0	(0-0)	2741	0.0	(0-0)	2500	0.1	(0-0)	
Czech Republic	1471	0.0	(0-0)	1483	0.0	(0-0)	1431	0.0	(0-0)	1752	0.1	(0-0)	
EU/EEA (population-weighted mean)	86325	0.2	(0-0)	121582	0.1	(0-0)	139 614	0.1	(0-0)	149725	0.1	(0-0)	↓ #
Italy	5592	0.2	(0-0)	6106	0.3	(0-0)	7280	0.3	(0-0)	15 452	0.4	(0-0)	↑ #
Portugal	5354	0.1	(0-0)	5760	0.0	(0-0)	6384	0.3	(0-1)	5797	0.5	(0-1)	1
Greece	1 2 1 5	1.2	(1-2)	1303	0.9	(0-2)	1467	1.6	(1-2)	1640	1.0	(1-2)	
Bulgaria	182	0.0	(0-2)	224	0.9	(0-3)	247	0.0	(0-1)	292	1.4	(0-3)	
Cyprus	123	0.0	(0-3)	149	0.0	(0-2)	156	1.3	(0-5)	150	2.0	(0-6)	1

 Table 3.6. Escherichia coli. Total number of invasive isolates tested (N) and percentage with resistance to carbapenems (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

* \uparrow and \downarrow indicate significant increasing and decreasing trends, respectively.

indicates a significant trend in the overall data; when only data from laboratories consistently reporting all four years are included, no trend could be detected. N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period. Table 3.7. *Escherichia coli*. Total number of invasive isolates tested (N) and percentage with combined resistance to fluoroquinolones, third-generation cephalosporins and aminoglycosides (%R), including 95 % confidence intervals (95 % CI), EU/EEA countries, 2015 to 2018

Country	2015			2016				2017		2018			Trend
	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	2015- 2018*
Finland	4103	2.6	(2-3)	4492	2.4	(2-3)	4971	2.4	(2-3)	4798	2.0	(2-2)	
Norway	3298	1.9	(1-2)	3609	1.9	(2-2)	3729	2.4	(2-3)	3876	2.0	(2-3)	
Denmark	4531	2.5	(2-3)	4640	1.8	(1-2)	4883	1.8	(1-2)	4829	2.0	(2-2)	
Iceland	162	0.0	(0-2)	178	1.1	(0-4)	199	1.5	(0-4)	191	2.1	(1-5)	
Netherlands	5377	2.0	(2-2)	6396	2.3	(2-3)	6681	1.9	(2-2)	7009	2.1	(2-3)	
Estonia	233	5.2	(3-9)	698	4.0	(3-6)	780	3.7	(3-5)	828	3.0	(2-4)	
Sweden	5257	2.5	(2-3)	6939	3.1	(3-4)	5746	2.0	(2-2)	5368	3.1	(3-4)	N/A
Belgium	2 2 8 5	3.5	(3-4)	3 4 9 6	3.8	(3-4)	3765	3.5	(3-4)	3809	3.1	(3-4)	
Germany	9013	3.0	(3-3)	17 013	3.4	(3-4)	22464	3.7	(3-4)	21471	3.4	(3-4)	
France	10988	3.9	(4-4)	11082	3.8	(3-4)	13 0 3 8	3.0	(3-3)	12107	3.5	(3-4)	\downarrow
Austria	4785	2.9	(2-3)	5235	3.5	(3-4)	5071	3.3	(3-4)	5598	3.6	(3-4)	
Luxembourg	347	5.2	(3-8)	418	3.8	(2-6)	433	3.5	(2-6)	417	3.8	(2-6)	
Malta	238	7.1	(4-11)	328	5.5	(3-9)	314	6.4	(4-10)	332	4.5	(3-7)	
United Kingdom	5 1 1 9	4.5	(4-5)	21101	4.0	(4-4)	26808	4.1	(4-4)	27756	4.5	(4-5)	
Lithuania	581	4.3	(3-6)	783	2.6	(2-4)	845	4.4	(3-6)	1098	4.6	(3-6)	
Slovenia	1325	8.1	(7-10)	1420	6.9	(6-8)	1383	6.3	(5-8)	1668	4.7	(4-6)	1
Ireland	2621	5.4	(5-6)	2984	5.3	(5-6)	3 116	5.7	(5-7)	3235	6.1	(5-7)	
Portugal	5366	7.6	(7-8)	5762	7.7	(7-8)	6365	6.6	(6-7)	5746	6.2	(6-7)	\downarrow
EU/EEA (population-weighted mean)	88084	6.3	(6-6)	120727	6.4	(6-7)	134 285	6.3	(6-6)	146788	6.2	(6-6)	
Czech Republic	3 165	6.9	(6-8)	3061	7.9	(7-9)	3199	6.3	(5-7)	3638	6.3	(6-7)	
Spain	6 4 1 6	5.5	(5-6)	6787	6.2	(6-7)	5774	5.5	(5-6)	7598	6.4	(6-7)	
Latvia	191	10.5	(7-16)	242	10.3	(7-15)	197	11.2	(7-16)	344	7.0	(5-10)	
Romania	364	13.5	(10-17)	410	11.7	(9-15)	513	9.7	(7-13)	641	7.2	(5-9)	\downarrow
Croatia	1000	6.9	(5-9)	1023	9.4	(8-11)	1133	9.4	(8-11)	1150	9.2	(8-11)	
Greece	1187	10.7	(9-13)	1300	10.4	(9-12)	1463	9.8	(8-11)	1628	9.8	(8-11)	
Poland	1532	6.1	(5-7)	2 4 1 1	8.5	(7-10)	1666	8.2	(7-10)	2386	10.5	(9-12)	1
Hungary	2 0 1 5	6.7	(6-8)	1981	6.4	(5-8)	2047	8.2	(7-9)	2254	11.4	(10-13)	1
Italy	5389	14.6	(14-16)	5763	12.9	(12-14)	6454	13.7	(13-15)	15622	11.4	(11-12)	1
Cyprus	123	9.8	(5-16)	149	11.4	(7-18)	156	15.4	(10-22)	151	14.6	(9-21)	
Slovakia	891	17.1	(15-20)	822	14.8	(12-17)	863	17.7	(15-20)	965	16.6	(14-19)	
Bulgaria	182	12.6	(8-18)	204	22.1	(17-28)	229	24.9	(19-31)	275	19.6	(15-25)	

* $\ensuremath{ \uparrow}$ and $\ensuremath{ \downarrow}$ indicate significant increasing and decreasing trends, respectively.

indicates a significant trend in the overall data; when only data from laboratories consistently reporting all four years are included, no trend could be detected. N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period.

3.2 Klebsiella pneumoniae

Klebsiella pneumoniae is mainly found in the human gastrointestinal tract, the skin and the respiratory tract. The majority of infections caused by *K. pneumoniae* are healthcare-associated and can spread rapidly between patients and via the hands of hospital personnel, leading to nosocomial outbreaks. Infections include urinary tract infections, lower respiratory tract infections, intraabdominal infections and bloodstream infections.

Similar to E. coli, K. pneumoniae can be resistant to multiple antimicrobial agents, and resistance traits are frequently acquired through plasmids. In contrast to E. coli, K. pneumoniae has a chromosomally encoded class A beta-lactamase and is thus intrinsically resistant to aminopenicillins. Many novel ESBL variants were initially identified in K. pneumoniae and were only subsequently found in *E. coli*. Carbapenems frequently withstand the effect of ESBLs and might remain as one of the few treatment options for severe K. pneumoniae infections. An increasing threat is carbapenem resistance mediated by a range of carbapenemases, which may confer resistance to virtually all available betalactam antibacterial drugs. Carbapenamase genes are often located on plasmids that can be exchanged between Enterobacteriaceae, including K. pneumoniae, and with other gram-negative bacteria.

Antimicrobial resistance

At EU/EEA level, more than a third (37.2%) of the *K. pneumoniae* isolates reported to EARS-Net for 2018 were resistant to at least one of the antimicrobial groups under regular surveillance (i.e. fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems) (Table 3.8). In 2018, the highest EU/ EEA population-weighted mean resistance percentage was reported for third-generation cephalosporins (31.7%), followed by fluoroquinolones (31.6%), aminoglycosides (22.7%) and carbapenems (7.5%) (Tables 3.9–3.12).

Between 2015 and 2018, there were significantly increasing trends in the EU/EEA population-weighted mean percentages of fluoroquinolone resistance and carbapenem resistance (Tables 3.9 and 3.12). The corresponding EU/EEA trend for aminoglycoside resistance decreased significantly during the same period (Table 3.11). All EU/EEA trends remained significant even when the analysis was restricted to only include the laboratories that consistently reported data.

Single resistance was less commonly reported than resistance to two or more antimicrobial groups, with the most common resistance phenotype being combined resistance to fluoroquinolones, third-generation cephalosporins and aminoglycosides (Table 3.8). In 2018, the EU/EEA population-weighted mean for combined resistance to fluoroquinolones, third-generation cephalosporins and aminoglycosides was 19.6% and this did not change significantly between 2015 and 2018 (Table 3.13). Large inter-country variations could be noted for all antimicrobial groups under regular surveillance, with generally higher resistance percentages reported from southern and eastern Europe than from northern Europe (Figures 3.8-3.12). The countries reporting the highest percentages of carbapenem resistance in *K. pneumoniae* were also among those reporting the highest resistance percentages for the other antimicrobial groups. Similar distinct variations could be seen in the country-specific distributions between fully susceptible isolates and isolates with resistance to one, two, three or four antimicrobial groups (Figure 3.7).

Discussion and conclusion

The resistance situation in *K. pneumoniae* in the EU/EEA remains problematic. Although the increase in the EU/EEA population-weighted mean carbapenem resistance percentage between 2015 and 2018 was more moderate than for the previous four-year period [25], the results underline the need for continuous close monitoring and greater efforts to curb this increase. Carbapenem resistance was almost always combined with resistance to several other key antimicrobial groups, severely limiting the treatment options for infections caused by these type of bacteria.

The highest percentages of carbapenem resistance were generally reported from southern and south-eastern European countries, a pattern that has also been reflected by other European surveillance initiatives such as the ECDC point prevalence survey of healthcareassociated infections and antimicrobial use in European acute care hospitals [15], EURGen-Net [20] and the ECDC study on the health burden of AMR [3]. Results from these initiatives also show that the situation has deteriorated in EU/EEA countries during recent years with regard to epidemiological stage, incidence and related disability-adjusted life years (DALYs). ECDC's study on the health burden of AMR estimated that the number of deaths attributed to infections with K. pneumoniae resistant to carbapenems increased six-fold between 2007 and 2015. Even in countries with lower levels of carbapenem-resistant K. pneumoniae, the impact of AMR on national burden is significant because of the high attributable mortality of these infections [3].

CRE can be resistant to carbapenems as a result of various mechanisms. One of the mechanisms which is seen with increasing frequency is the production of carbapenemase enzymes. The overall presence and spread of carbapenemase-producing Enterobacteriaceae is not possible to assess through the data available from EARS-Net, as some carbapenemases do not confer a fully carbapenem-resistant phenotype. One example is the OXA-48-like carbapenemase enzymes, presenting a particular problem for laboratory detection because of their weak hydrolysing capacity of carbapenems [26]. This is partly reflected by the substantially higher percentages of K. pneumoniae isolates reported as susceptible, increased exposure (I) compared to carbapenem-resistant K. pneumoniae in some countries in the EU/EEA [27]. The recently launched Carbapenem and/

or Colistin-Resistant Enterobacteriaceae (CCRE) project (as part EURGen-Net) will provide updated and more detailed information on the distribution of carbapene-mase-producing *K. pneumoniae* in Europe [22].

As highlighted in the September 2019 update of ECDC's rapid risk assessment on CRE, options for action include timely and appropriate diagnosis, high standards of infection prevention and control and antimicrobial stewardship [21]. Numerous reports on outbreaks and examples of cross-border spread of CRE demonstrate the transmission potential in EU/EEA healthcare systems [21, 26, 28]. In recent years, many EU/EEA countries have developed and implemented recommendations and guidance documents on multidrug-resistant Enterobacteriaceae and/or CRE [29], indicating a trend towards nationally coordinated responses to this public health threat. In 2017, to support countries, ECDC published a guidance document on how to prevent the entry and spread of CRE into healthcare settings. The guidance outlines evidence-based best practices for the prevention of CRE, including measures for intervention that can be adopted or adapted to local needs depending on the availability of financial and structural resources [30].

Colistin is frequently being used to treat CRE infections, but colistin resistance may develop during treatment. The recent discovery of transferable plasmid-mediated colistin resistance genes that can transmit colistin resistance more easily between bacteria further increases the risk for spread of colistin resistance [31]. Colistin resistance poses a substantial public health risk to the EU/EEA because it further limits treatment options in patients with infections caused by multidrugresistant gram-negative bacteria, including CRE. The distribution of colistin resistance is difficult to assess through EARS-Net, as colistin susceptibility testing is generally not part of the initial routine AST panel for Enterobacteriaceae, but is performed at national level after referral of multidrug-resistant isolates to a reference laboratory. In addition, colistin susceptibility testing is methodologically challenging, substantially reducing the quality of results from agar dilution, disk diffusion and gradient diffusion. A joint EUCAST and

Figure 3.7. *Klebsiella pneumoniae*. Distribution of isolates: fully susceptible and resistant to one, two, three and four antimicrobial groups (among isolates tested against fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems), EU/EEA countries, 2018

Only data from isolates tested against all included antimicrobial groups are included in analysis.

CLSI sub-committee has issued recommendations confirming that broth microdilution is so far the only valid method for colistin susceptibility testing [32]. A survey among EARS-Net participating laboratories in 2017 showed that a majority of the responding local laboratories did not test for colistin susceptibility locally or used methods that are not recommended by EUCAST (unpublished data, ECDC/UK NEQAS). This has led to the conclusion that data sources other than EARS-Net are needed for colistin susceptibility surveillance until local laboratory capacity has improved. To better understand the capacity for colistin susceptibility testing and the distribution of colistin-resistant Enterobacteriaceae in Europe, ECDC has included colistin in the surveillance panel of the CCRE project. This project includes a capacity building component for reference laboratories, which hopefully will also improve diagnostic capacity at the local level [22].

A novel antibiotic-enzyme inhibitor combination, ceftazidime-avibactam, was recently launched as a therapeutic alternative for patients infected with multidrug-resistant gram-negative bacteria, including CRE caused by certain, but not all, types of carbapenemase. However, soon after its launch rapidly emerging resistance to ceftazidime-avibactam was reported, both within and outside the EU/EEA, in clinical settings and in patients during treatment [33]. WHO sees a critical need for research and the development of new antibiotics which target third-generation cephalosporin and carbapenem resistance in Enterobacteriaceae, including *K. pneumoniae* and *E. coli* [34].

Similar to *E. coli*, the trends in fluoroquinolone resistance may be influenced by the fact that in 2016, EUCAST lowered its clinical breakpoints for several fluoroquinolones in Enterobacteriaceae [23]. As EARS-Net bases its results on SIR interpretations, it is not possible to assess when or to what degree this change has been implemented by participating laboratories and how these changes have influenced the results. As a consequence, trend analyses for fluoroquinolone resistance should be interpreted with caution.

phenotype, 20/224 countries, 2010		
Resistance pattern	Number of isolates	Percentage (%) of total**
Fully susceptible	22732	62.8
Single resistance (to indicated antimicrobial group)		
Total (all single resistance)	2624	7.2
Third-generation cephalosporins	1 3 5 4	3.7
Fluoroquinolones	1064	2.9
Other antimicrobial groups	206	0.6
Resistance to two antimicrobial groups		
Total (all two-group combinations)	2772	7.7
Third-generation cephalosporins + fluoroquinolones	1750	4.8
Third-generation cephalosporins + aminoglycosides	525	1.5
Fluoroquinolones + aminoglycosides	401	1.1
Other antimicrobial group combinations	96	0.3
Resistance to three antimicrobial groups		
Total (all three-group combinations)	6279	17.3
Third-generation cephalosporins + fluoroquinolones + aminoglycosides	4978	13.7
Third-generation cephalosporins + fluoroquinolones + carbapenems	1 185	3.3
Other antimicrobial group combinations	116	0.3
Resistance to four antimicrobial groups		
Third-generation cephalosporins + fluoroquinolones + aminoglycosides + carbapenems	1799	5.0

Table 3.8. *Klebsiella pneumoniae*. Total number of invasive isolates tested (N)* and percentage resistance (%) per phenotype, EU/EEA countries, 2018

Only resistance combinations >1 % of the total are specified.

* Only isolates with complete susceptibility information for fluoroquinolones, third-generation cephalosporins, aminoglycosides and carbapenems were included in the analysis.

** Not adjusted for population differences in the reporting countries.

Figure 3.8. *Klebsiella pneumoniae*. Percentage (%) of invasive isolates with resistance to fluoroquinolones, by country, EU/EEA countries, 2018

Figure 3.9. *Klebsiella pneumoniae*. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, by country, EU/EEA countries, 2018

Figure 3.10. *Klebsiella pneumoniae*. Percentage (%) of invasive isolates with resistance to aminoglycosides, by country, EU/EEA countries, 2018

Figure 3.11. *Klebsiella pneumoniae*. Percentage (%) of invasive isolates with resistance to carbapenems, by country, EU/EEA countries, 2018

Figure 3.12. *Klebsiella pneumoniae*. Percentage (%) of invasive isolates with combined resistance to fluoroquinolones, third-generation cephalosporins and aminoglycosides, by country, EU/EEA countries, 2018

Country	2015			2016			2017			2018			Trend
Country	N	%R	(95%Cl)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%Cl)	2018*
Iceland	35	2.9	(0-15)	21	0.0	(0-16)	16	6.3	(0-30)	16	0.0	(0-21)	N/A
Finland	658	3.3	(2-5)	769	2.7	(2-4)	756	7.9	(6-10)	808	6.3	(5-8)	1
Denmark	935	5.3	(4-7)	1 152	5.3	(4-7)	1183	9.1	(8-11)	1279	8.5	(7-10)	1
Sweden	907	4.5	(3-6)	1533	5.4	(4-7)	1034	9.8	(8-12)	1087	10.1	(8-12)	N/A
Netherlands	908	6.8	(5-9)	1134	6.9	(5-9)	1190	11.9	(10-14)	1296	12.2	(10-14)	1
Norway	700	5.0	(4-7)	808	4.3	(3-6)	781	10.2	(8-13)	735	13.1	(11-16)	1
United Kingdom	1 0 1 1	13.3	(11-16)	4065	7.5	(7-8)	5293	9.3	(9-10)	5600	13.1	(12-14)	↑ #
Austria	1029	11.7	(10-14)	1246	9.8	(8-12)	1147	14.2	(12-16)	1221	13.2	(11-15)	1
Germany	1580	9.6	(8-11)	3068	12.6	(11-14)	3857	15.3	(14-16)	3881	13.3	(12-14)	1
Ireland	388	17.0	(13-21)	453	11.3	(8-15)	478	14.9	(12-18)	483	18.0	(15-22)	
Estonia	62	33.9	(22-47)	183	29.5	(23-37)	161	24.8	(18-32)	205	21.0	(16-27)	1
Belgium	379	22.7	(19-27)	669	23.6	(20-27)	803	23.7	(21-27)	932	22.6	(20-25)	
Spain	1508	21.6	(20-24)	1676	22.7	(21-25)	1486	22.5	(20-25)	1927	23.8	(22-26)	
Luxembourg	60	20.0	(11-32)	78	35.9	(25-48)	99	28.3	(20-38)	85	24.7	(16-35)	
Slovenia	237	24.5	(19-30)	267	29.6	(24-35)	306	30.4	(25-36)	289	27.3	(22-33)	
France	2332	30.7	(29-33)	2589	27.7	(26-29)	2886	26.8	(25-28)	2997	30.4	(29-32)	
EU/EEA (population-weighted mean)	22 417	30.1	(30-31)	30583	30.3	(30-31)	32784	31.5	(31-32)	38 456	31.6	(31-32)	Ť
Hungary	700	36.7	(33-40)	713	35.2	(32-39)	685	41.5	(38-45)	842	38.0	(35-41)	
Latvia	112	42.0	(33-52)	91	41.8	(32-53)	116	32.8	(24-42)	200	38.5	(32-46)	
Portugal	2094	38.6	(36-41)	2 350	41.7	(40-44)	2736	45.7	(44-48)	2592	43.8	(42-46)	Ť
Czech Republic	1 416	48.9	(46-52)	1384	50.5	(48-53)	1329	49.2	(46-52)	1482	47.2	(45-50)	
Croatia	380	48.7	(44-54)	318	43.4	(38-49)	309	40.8	(35-46)	327	48.6	(43-54)	
Cyprus	62	37.1	(25-50)	75	32.0	(22-44)	71	35.2	(24-47)	87	49.4	(39-60)	
Italy	2000	53.7	(51-56)	2248	56.0	(54-58)	2562	55.7	(54-58)	5752	52.7	(51-54)	
Malta	88	26.1	(17-37)	102	33.3	(24-43)	117	39.3	(30-49)	137	55.5	(47-64)	1
Lithuania	179	45.8	(38-53)	324	54.6	(49-60)	326	64.7	(59-70)	370	56.8	(52-62)	1
Romania	267	61.4	(55-67)	342	60.8	(55-66)	337	64.1	(59-69)	441	57.4	(53-62)	
Slovakia	474	70.0	(66-74)	466	66.3	(62-71)	466	66.7	(62-71)	497	61.0	(57-65)	Ŷ
Bulgaria	96	37.5	(28-48)	160	55.6	(48-63)	169	59.8	(52-67)	193	62.7	(55-70)	1
Greece	1161	66.4	(64-69)	1180	68.6	(66-71)	1346	66.9	(64-69)	1488	68.1	(66-70)	
Poland	659	63.9	(60-68)	1 119	66.8	(64-70)	739	66.3	(63-70)	1207	68.2	(65-71)	

Table 3.9. *Klebsiella pneumoniae*. Total number of invasive isolates tested (N) and percentage with resistance to fluoroquinolones (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

* $\ensuremath{\uparrow}$ and $\ensuremath{\downarrow}$ indicate significant increasing and decreasing trends, respectively.

indicates a significant trend in the overall data; when only data from laboratories consistently reporting all four years are included, no trend could be detected. N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period.

Country	2015			2016			2017			2018			Trend
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	2015- 2018*
Iceland	36	0.0	(0-10)	25	0.0	(0-14)	17	5.9	(0-29)	16	0.0	(0-21)	N/A
Finland	644	3.0	(2-5)	760	4.1	(3-6)	744	4.6	(3-6)	805	4.5	(3-6)	
Sweden	1001	3.3	(2-5)	1537	4.9	(4-6)	1034	5.6	(4-7)	1089	5.5	(4-7)	N/A
Denmark	929	7.8	(6-10)	1 118	7.5	(6-9)	1 1 2 5	7.3	(6-9)	1159	6.5	(5-8)	
Norway	701	5.0	(4-7)	811	5.8	(4-8)	781	5.8	(4-8)	737	7.5	(6-10)	
Austria	1050	8.4	(7-10)	1245	9.6	(8-11)	1072	8.6	(7-10)	1221	8.4	(7-10)	
Netherlands	908	8.6	(7-11)	1134	10.3	(9-12)	1189	10.9	(9-13)	1295	11.1	(9-13)	
Germany	1581	10.2	(9-12)	3068	13.6	(12-15)	3854	14.6	(14-16)	3884	12.9	(12-14)	
United Kingdom	916	10.5	(9-13)	3914	8.9	(8-10)	4973	11.4	(10-12)	5181	13.0	(12-14)	↑ #
Estonia	93	23.7	(15-34)	183	32.8	(26-40)	161	21.1	(15-28)	206	13.6	(9-19)	$\mathbf{\downarrow}$
Ireland	387	14.7	(11-19)	452	13.5	(10-17)	478	14.6	(12-18)	483	14.5	(11-18)	
Slovenia	237	22.8	(18-29)	267	22.8	(18-28)	312	23.7	(19-29)	289	14.9	(11-20)	\downarrow
Belgium	406	19.7	(16-24)	669	22.9	(20-26)	803	19.3	(17-22)	935	21.4	(19-24)	
Spain	1 4 9 1	20.3	(18-22)	1677	22.4	(20-24)	1513	21.3	(19-23)	1994	25.5	(24-27)	↑ #
Luxembourg	60	28.3	(17-41)	78	35.9	(25-48)	99	27.3	(19-37)	85	29.4	(20-40)	
France	2338	30.5	(29-32)	2597	28.9	(27-31)	2892	28.8	(27-31)	3033	30.8	(29-32)	
EU/EEA (population-weighted mean)	22511	31.0	(30-32)	30 4 4 7	31.4	(31-32)	32829	31.2	(31-32)	38122	31.7	(31-32)	
Latvia	115	47.0	(38-56)	95	47.4	(37-58)	116	33.6	(25-43)	204	37.7	(31-45)	1
Hungary	704	37.2	(34-41)	722	37.5	(34-41)	693	41.1	(37-45)	848	40.2	(37-44)	
Croatia	380	46.8	(42-52)	321	48.6	(43-54)	309	41.7	(36-47)	318	44.3	(39-50)	
Cyprus	62	43.5	(31-57)	75	30.7	(21-42)	71	46.5	(35-59)	87	48.3	(37-59)	
Portugal	2094	40.4	(38-43)	2349	46.7	(45-49)	2743	44.9	(43-47)	2579	50.0	(48-52)	1
Czech Republic	1 417	54.1	(51-57)	1384	51.8	(49-54)	1329	53.2	(50-56)	1482	50.1	(47-53)	
Malta	88	15.9	(9-25)	102	21.6	(14-31)	117	35.0	(26-44)	137	53.3	(45-62)	1
Italy	1999	55.9	(54-58)	2246	55.8	(54-58)	2546	54.6	(53-57)	5832	53.6	(52-55)	↓ #
Lithuania	178	51.7	(44-59)	326	56.7	(51-62)	326	63.2	(58-68)	371	55.8	(51-61)	
Slovakia	469	67.2	(63-71)	465	61.3	(57-66)	459	63.2	(59-68)	497	55.9	(51-60)	1
Romania	270	70.7	(65-76)	344	68.0	(63-73)	339	62.5	(57-68)	443	61.4	(57-66)	1
Poland	676	64.2	(60-68)	1142	64.4	(62-67)	1 203	63.0	(60-66)	1 2 1 9	64.6	(62-67)	
Greece	1185	69.5	(67-72)	1 181	72.5	(70-75)	1 362	69.2	(67-72)	1500	70.7	(68-73)	
Bulgaria	96	75.0	(65-83)	160	72.5	(65-79)	169	76.3	(69-83)	193	77.7	(71-83)	

 Table 3.10. Klebsiella pneumoniae. Total number of invasive isolates tested (N) and percentage with resistance to third-generation cephalosporins (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

* $\ensuremath{\uparrow}$ and $\ensuremath{\downarrow}$ indicate significant increasing and decreasing trends, respectively.

indicates a significant trend in the overall data; when only data from laboratories consistently reporting all four years are included, no trend could be detected. N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period.
Country	2015			2016			2017			2018		Trend	
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%Cl)	N	%R	(95%CI)	2015- 2018*
Iceland	36	0.0	(0-10)	25	0.0	(0-14)	17	11.8	(1-36)	16	0.0	(0-21)	N/A
Finland	625	1.9	(1-3)	727	2.3	(1-4)	721	2.9	(2-4)	774	2.6	(2-4)	
Sweden	943	3.2	(2-5)	1 141	3.4	(2-5)	1033	4.7	(4-6)	1087	3.0	(2-4)	N/A
Denmark	938	2.6	(2-4)	1154	3.2	(2-4)	1186	3.2	(2-4)	1278	3.3	(2-4)	
Austria	959	4.8	(4-6)	1 157	4.8	(4-6)	1141	4.8	(4-6)	1 2 1 4	4.8	(4-6)	
Norway	700	3.6	(2-5)	809	3.3	(2-5)	781	4.2	(3-6)	737	5.3	(4-7)	
Germany	1582	5.6	(5-7)	3042	7.7	(7-9)	3776	8.2	(7-9)	3878	6.2	(5-7)	
Netherlands	908	5.7	(4-7)	1134	6.1	(5-8)	1190	7.6	(6-9)	1296	7.3	(6-9)	
United Kingdom	1070	9.3	(8-11)	4135	6.7	(6-7)	5363	7.9	(7-9)	5709	9.1	(8-10)	1 #
Estonia	61	21.3	(12-34)	183	21.3	(16-28)	161	12.4	(8-19)	205	10.2	(6-15)	¥
Belgium	354	11.6	(8-15)	637	13.8	(11-17)	633	12.5	(10-15)	747	12.4	(10-15)	
Slovenia	237	19.0	(14-25)	267	16.5	(12-21)	312	16.0	(12-21)	289	12.8	(9-17)	
Ireland	389	15.9	(12-20)	453	11.5	(9-15)	479	11.9	(9-15)	483	13.0	(10-16)	
Spain	1509	16.0	(14-18)	1678	15.5	(14-17)	1513	17.4	(16-19)	1995	19.3	(18-21)	1 #
Luxembourg	60	15.0	(7-27)	78	26.9	(18-38)	99	18.2	(11-27)	85	20.0	(12-30)	
EU/EEA (population-weighted mean)	22360	24.2	(24-25)	30 0 2 3	24.4	(24-25)	32996	24.1	(24-25)	38 290	22.7	(22-23)	$\mathbf{\downarrow}$
France	2337	26.3	(25-28)	2569	26.2	(25-28)	2857	23.8	(22-25)	2990	24.8	(23-26)	
Italy	1956	34.0	(32-36)	2300	36.1	(34-38)	2571	34.5	(33-36)	5693	27.0	(26-28)	↓ #
Latvia	113	43.4	(34-53)	91	38.5	(28-49)	115	29.6	(21-39)	203	31.0	(25-38)	1
Hungary	706	34.6	(31-38)	720	34.7	(31-38)	693	37.8	(34-42)	845	32.7	(30-36)	
Portugal	2090	32.6	(31-35)	2337	35.0	(33-37)	2717	33.5	(32-35)	2572	34.4	(33-36)	
Croatia	380	43.2	(38-48)	316	36.1	(31-42)	311	30.9	(26-36)	330	36.4	(31-42)	¥
Cyprus	62	37.1	(25-50)	75	22.7	(14-34)	71	26.8	(17-39)	87	36.8	(27-48)	
Malta	88	22.7	(14-33)	102	22.5	(15-32)	117	31.6	(23-41)	137	46.7	(38-55)	1
Lithuania	179	46.4	(39-54)	325	49.2	(44-55)	322	53.7	(48-59)	369	48.5	(43-54)	
Czech Republic	1 417	51.9	(49-55)	1385	47.1	(44-50)	1330	49.6	(47-52)	1483	48.6	(46-51)	
Romania	266	54.1	(48-60)	336	61.9	(56-67)	338	58.6	(53-64)	436	50.9	(46-56)	
Poland	666	58.6	(55-62)	1075	56.7	(54-60)	1165	55.5	(53-58)	1178	54.2	(51-57)	
Greece	1170	50.7	(48-54)	1171	52.9	(50-56)	1348	53.2	(50-56)	1487	54.4	(52-57)	
Slovakia	475	66.5	(62-71)	466	62.4	(58-67)	468	61.1	(57-66)	496	54.8	(50-59)	¥
Bulgaria	84	59.5	(48-70)	135	64.4	(56-72)	168	63.1	(55-70)	191	59.2	(52-66)	

 Table 3.11. Klebsiella pneumoniae. Total number of invasive isolates tested (N) and percentage with resistance to aminoglycosides (%R), including 95 % confidence intervals (95 % CI), EU/EEA countries, 2015 to 2018

* $\ensuremath{\uparrow}$ and $\ensuremath{\downarrow}$ indicate significant increasing and decreasing trends, respectively.

Country -	2015			2016			2017			2018		Trend	
Country	N	%R	(95%Cl)	N	%R	(95%Cl)	N	%R	(95%CI)	N	%R	(95%CI)	2015- 2018*
Iceland	35	0.0	(0-12)	21	0.0	(0-12)	12	0.0	(0-21)	16	0.0	(0-21)	N/A
Luxembourg	60	0.0	(0-6)	78	0.0	(0-5)	99	0.0	(0-4)	85	0.0	(0-4)	
Norway	700	0.1	(0-1)	810	0.0	(0-0)	781	0.0	(0-0)	736	0.1	(0-1)	
Hungary	687	0.1	(0-1)	703	0.4	(0-1)	681	0.3	(0-1)	827	0.2	(0-1)	
Sweden	900	0.0	(0-0)	1531	0.1	(0-0)	1033	0.1	(0-1)	1088	0.2	(0-1)	N/A
Lithuania	177	0.0	(0-2)	325	0.0	(0-1)	325	0.6	(0-2)	371	0.3	(0-1)	
Czech Republic	1100	0.3	(0-1)	1096	0.0	(0-0)	1051	0.4	(0-1)	1194	0.3	(0-1)	
Germany	1583	0.1	(0-0)	3068	0.5	(0-1)	3857	0.5	(0-1)	3879	0.4	(0-1)	
Latvia	112	0.0	(0-3)	90	2.2	(0-8)	116	1.7	(0-6)	204	0.5	(0-3)	
France	2244	0.5	(0-1)	2528	0.4	(0-1)	2807	0.7	(0-1)	2998	0.5	(0-1)	
Denmark	846	0.0	(0-0)	1 1 1 9	0.3	(0-1)	1185	0.3	(0-1)	1109	0.5	(0-1)	1
Netherlands	907	0.1	(0-1)	1131	0.1	(0-0)	1190	0.5	(0-1)	1295	0.5	(0-1)	↑ #
Estonia	56	0.0	(0-6)	168	0.0	(0-2)	143	0.0	(0-3)	179	0.6	(0-3)	
Finland	658	0.0	(0-1)	770	0.3	(0-1)	758	0.3	(0-1)	810	0.6	(0-1)	1
Ireland	389	0.5	(0-2)	453	0.7	(0-2)	478	0.2	(0-1)	482	0.6	(0-2)	
Slovenia	237	1.3	(0-4)	267	0.0	(0-1)	312	0.0	(0-1)	289	0.7	(0-2)	
United Kingdom	962	0.4	(0-1)	4068	0.3	(0-0)	5 2 7 4	0.6	(0-1)	5592	0.7	(0-1)	↑ #
Austria	1022	0.8	(0-2)	1198	0.7	(0-1)	1109	1.0	(0-2)	1184	1.0	(1-2)	
Belgium	389	0.5	(0-2)	669	2.4	(1-4)	791	1.1	(1-2)	935	1.4	(1-2)	
Croatia	380	2.4	(1-4)	323	0.0	(0-1)	302	0.0	(0-1)	325	2.2	(1-4)	
Slovakia	436	0.9	(0-2)	435	2.5	(1-4)	450	4.4	(3-7)	488	3.5	(2-6)	1
Spain	1483	2.2	(1-3)	1677	2.1	(1-3)	1 5 1 0	2.8	(2-4)	1995	3.8	(3-5)	↑ #
EU/EEA (population-weighted mean)	21773	6.8	(6-7)	30127	7.4	(7-8)	32821	7.2	(7-7)	37824	7.5	(7-8)	1
Poland	660	0.5	(0-1)	1123	2.1	(1-3)	1161	6.4	(5-8)	1183	8.1	(7-10)	1
Portugal	2085	3.4	(3-4)	2340	5.2	(4-6)	2720	8.6	(8-10)	2563	11.7	(10-13)	1
Malta	88	4.5	(1-11)	102	5.9	(2-12)	117	10.3	(5-17)	136	15.4	(10-23)	1
Bulgaria	95	3.2	(1-9)	159	4.4	(2-9)	169	12.4	(8-18)	193	21.2	(16-28)	1
Cyprus	62	12.9	(6-24)	75	10.7	(5-20)	71	15.5	(8-26)	87	21.8	(14-32)	
Italy	1999	33.5	(31-36)	2307	33.9	(32-36)	2634	29.7	(28-31)	5660	26.8	(26-28)	\downarrow
Romania	271	24.7	(20-30)	334	31.4	(26-37)	334	22.5	(18-27)	441	29.5	(25-34)	
Greece	1 185	61.9	(59-65)	1180	66.9	(64-70)	1363	64.7	(62-67)	1498	63.9	(61-66)	
Iceland	2		()	1		()	0		()	1		()	N/A

 Table 3.12. Klebsiella pneumoniae. Total number of invasive isolates tested (N) and percentage with resistance to carbapenems (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

* \Uparrow and \clubsuit indicate significant increasing and decreasing trends, respectively.

N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period.

The symbol # indicates a significant trend in the overall data, which was not observed when only data from laboratories consistently reporting for all four years were included.

Table 3.13. *Klebsiella pneumoniae*. Total number of invasive isolates tested (N) and percentage with combined resistance to fluoroquinolones, third-generation cephalosporins and aminoglycosides (%R), including 95% confidence intervals (95 % CI), EU/EEA countries, 2015 to 2018

Country	2015				2016			2017			2018		Trend
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	2015- 2018*
Iceland	35	0.0	(0-10)	21	0.0	(0-16)	16	0.0	(0-21)	16	0.0	(0-21)	N/A
Finland	623	1.1	(0-2)	726	1.2	(1-2)	716	2.4	(1-4)	771	1.6	(1-3)	
Denmark	924	1.1	(1-2)	1 112	1.4	(1-2)	1122	2.4	(2-3)	1 159	1.9	(1-3)	
Sweden	860	1.9	(1-3)	1 1 4 1	2.1	(1-3)	1033	3.3	(2-5)	1086	2.6	(2-4)	N/A
Austria	936	3.3	(2-5)	1156	3.5	(3-5)	1 0 6 2	3.0	(2-4)	1203	3.1	(2-4)	
Norway	699	2.3	(1-4)	807	2.6	(2-4)	781	3.2	(2-5)	735	3.8	(3-5)	
Germany	1578	3.2	(2-4)	3038	5.3	(5-6)	3774	6.3	(6-7)	3878	4.7	(4-5)	
Netherlands	908	3.0	(2-4)	1134	3.5	(3-5)	1189	5.0	(4-6)	1295	4.7	(4-6)	1
United Kingdom	906	4.2	(3-6)	3764	3.7	(3-4)	4760	4.2	(4-5)	5005	5.7	(5-6)	↑ #
Ireland	387	7.2	(5-10)	452	5.8	(4-8)	477	5.9	(4-8)	483	8.1	(6-11)	
Estonia	36	22.2	(10-39)	183	16.9	(12-23)	161	11.8	(7-18)	204	8.8	(5-14)	\downarrow
Belgium	353	9.3	(7-13)	637	9.3	(7-12)	633	8.5	(6-11)	742	9.8	(8-12)	
Slovenia	237	16.9	(12-22)	267	13.1	(9-18)	306	16.0	(12-21)	289	10.0	(7-14)	
Luxembourg	60	13.3	(6-25)	78	24.4	(15-35)	99	17.2	(10-26)	85	15.3	(8-25)	
Spain	1488	11.7	(10-13)	1674	12.4	(11-14)	1484	12.8	(11-15)	1926	15.7	(14-17)	↑ #
EU/EEA (population-weighted mean)	21930	19.7	(19-20)	29403	20.6	(20-21)	31473	20.5	(20-21)	37137	19.6	(19-20)	
France	2324	22.5	(21-24)	2556	21.3	(20-23)	2844	19.4	(18-21)	2948	21.5	(20-23)	
Italy	1940	29.7	(28-32)	2174	32.7	(31-35)	2352	31.6	(30-34)	5587	24.8	(24-26)	↓ #
Portugal	2084	25.0	(23-27)	2332	27.2	(25-29)	2711	28.4	(27-30)	2538	26.7	(25-28)	
Latvia	112	36.6	(28-46)	91	31.9	(22-42)	115	24.3	(17-33)	199	27.6	(22-34)	
Croatia	380	32.4	(28-37)	309	27.5	(23-33)	305	23.0	(18-28)	312	28.2	(23-34)	
Hungary	698	30.2	(27-34)	711	30.1	(27-34)	685	33.1	(30-37)	837	28.9	(26-32)	
Cyprus	62	17.7	(9-30)	75	18.7	(11-29)	71	25.4	(16-37)	87	32.2	(23-43)	1
Czech Republic	1416	41.5	(39-44)	1384	40.8	(38-43)	1329	41.8	(39-44)	1482	38.7	(36-41)	
Malta	88	14.8	(8-24)	102	14.7	(8-23)	117	28.2	(20-37)	137	43.8	(35-53)	1
Lithuania	178	39.9	(33-47)	323	42.1	(37-48)	322	48.1	(43-54)	368	45.1	(40-50)	
Romania	261	49.8	(44-56)	335	55.2	(50-61)	336	55.4	(50-61)	434	46.3	(42-51)	
Bulgaria	84	28.6	(19-39)	133	45.9	(37-55)	168	50.0	(42-58)	191	47.6	(40-55)	1
Slovakia	468	59.6	(55-64)	465	55.7	(51-60)	457	57.1	(52-62)	491	49.5	(45-54)	\downarrow
Greece	1160	46.7	(44-50)	1 171	48.4	(46-51)	1345	47.9	(45-51)	1487	50.4	(48-53)	
Poland	645	54.0	(50-58)	1052	53.6	(51-57)	703	52.6	(49-56)	1162	51.5	(49-54)	

* ↑ and ↓ indicate significant increasing and decreasing trends, respectively.

N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period. The symbol # indicates a significant trend in the overall data, which was not observed when only data from laboratories consistently reporting for all four years were included.

3.3 *Pseudomonas aeruginosa*

Pseudomonas aeruginosa is a non-fermenting gramnegative bacterium which is ubiquitous in aquatic environments in nature. It is an opportunistic pathogen and a major cause of infection in hospitalised patients with localised or systemic impairment of immune defences. It commonly causes healthcare-associated pneumonia (including ventilator-associated pneumonia), bloodstream infections and urinary tract infections.

P. aeruginosa is intrinsically resistant to the majority of antimicrobial agents due to its selective ability to prevent various antibiotic molecules from penetrating its outer membrane or to extrude them if they enter the cell. The antimicrobial groups that remain active include some fluoroquinolones (e.g. ciprofloxacin and levofloxacin), aminoglycosides (e.g. gentamicin, tobramycin and amikacin), some beta-lactams (e. g. piperacillin-tazobactam, ceftazidime, cefepime, ceftolozane-tazobactam, ceftazidime-avibactam, imipenem, meropenem, doripenem) and polymyxins. Resistance of *P. aeruginosa* to these agents can be acquired through one or more of several mechanisms, including modified antimicrobial targets, efflux and reduced permeability and degrading enzymes.

Antimicrobial resistance

In the EU/EEA, 32.1% of the P. aeruginosa isolates reported to EARS-Net for 2018 were resistant to at least one of the antimicrobial groups under regular surveillance (piperacillin ± tazobactam, fluoroquinolones, ceftazidime, aminoglycosides and carbapenems) (Table 3.14). The highest EU/EEA population-weighted mean resistance percentage in 2018 was reported for fluoroquinolones (19.7%), followed by piperacillin ± tazobactam (18.3%), carbapenems (17.2%), ceftazidime (14.1%) and aminoglycosides (11.8%) (Tables 3.15-3.19). There were significantly decreasing trends in the EU/EEA population-weighted mean percentages of piperacillin ± tazobactam resistance, ceftazidime resistance, aminoglycoside resistance and carbapenem resistance between 2015 and 2018 (Tables 3.15, 3.17-3.19). By excluding all laboratories apart from those that consistently reported data for all four years, only the decreasing trends for aminoglycoside resistance and carbapenem resistance remained statistically significant (Tables 3.18-3.19).

Resistance to two or more antimicrobial groups was common and seen in 19.2% of all tested isolates. (Table 3.14). The EU/EEA population-weighted mean percentage of combined resistance, defined as resistance to at least three of the antimicrobial groups under surveillance, significantly decreased between 2015 and 2018 (Table 3.20). Large inter-country variations were seen for all antimicrobial groups, with generally higher resistance percentages reported from southern and eastern Europe than northern Europe (Figures 3.13–3.18).

Discussion and conclusion

As in previous years, carbapenem resistance, often combined with resistance to other important antimicrobial groups, was common in *P. aeruginosa* in several EU/EEA countries in 2018. The public health implications of infections with resistant *P. aeruginosa* should not be overlooked, as the bacterium remains one of the major causes of healthcare-associated infection in Europe [15, 35-36]. *P. aeruginosa* is intrinsically resistant to many important antimicrobial agents and is a challenging pathogen to control in hospitals and other healthcare settings.

P. aeruginosa and Acinetobacter species bloodstream infections are proportionally far more commonly reported from some EU/EEA countries than others [27]. A recent analysis based on EARS-Net data highlighted that countries reporting high proportions of P. aeruginosa and Acinetobacter species bloodstream infections among all reported bloodstream infections were also those where the percentage of isolates with acquired resistance in gram-negative bacteria was generally the highest [37]. This finding is probably attributed to shared risk factors, such as a higher consumption of broad-spectrum antimicrobials [17] and sub-standard infection prevention and control measures in healthcare (e.g. lower consumption of alcohol-based hand rub, lower proportions of beds in single rooms and lower staffing of infection control teams) in these countries [15]. Addressing these factors is likely to have a positive impact on both the burden of infections caused by bacteria with high levels of intrinsic resistance, such as P. aeruginosa and Acinetobacter species, and on the burden caused by bacteria with acquired resistance.

Table 3.14. Pseudomonas aeruginosa. Total number of invasive isolates tested (N)* and percentage resistance (%) per phenotype, EU/EEA countries, 2018

Resistance pattern	Number of isolates	Percentage (%) of total**
Fully susceptible (to tested antibiotics)	12 196	67.9
Single resistance (to indicated antimicrobial group)		
Total (all single resistance types)	2311	12.9
Carbapenems	894	5.0
Fluoroquinolones	756	4.2
[Piperacillin ± tazobactam]	346	1.9
Aminoglycosides	211	1.2
Ceftazidime	104	0.6
Resistance to two antimicrobial groups		
Total (all two groups combinations)	1360	7.6
[Piperacillin ± tazobactam] + ceftazidime	571	3.2
Fluoroquinolones + aminoglycosides	246	1.4
Fluoroquinolones + carbapenems	181	1.0
Other antimicrobial group combinations	362	2.0
Resistance to three antimicrobial groups		
Total (all three group combinations)	739	4.1
Fluoroquinolones + aminoglycosides + carbapenems	169	0.9
Other antimicrobial group combinations	570	3.2
Resistance to four antimicrobial groups		
Total (all four group combinations)	616	3.4
[Piperacillin ± tazobactam] + fluoroquinolones + aminoglycosides + carbapenems	235	1.3
Fluoroquinolones + ceftazidime + aminoglycosides + carbapenems	139	0.8
Other antimicrobial group combinations	242	1.3
Resistance to five antimicrobial groups		
[Piperacillin ± tazobactam] + fluoroquinolones + ceftazidime + aminoglycosides + carbapenems	731	4.1

Only resistance combinations >1% of the total are specified.

* Only isolates with complete susceptibility information for at least three antimicrobial groups among piperacillin/tazobactam, fluoroquinolones, ceftazidime, aminoglycosides and carbapenems were included in the analysis.

** Not adjusted for population differences in the reporting countries.

Figure 3.13. Pseudomonas aeruginosa. Percentage (%) of invasive isolates with resistance to piperacillin ± tazobactam, by country, EU/EEA countries, 2018

31

Figure 3.14. *Pseudomonas aeruginosa*. Percentage (%) of invasive isolates with resistance to fluoroquinolones, by country, EU/EEA countries, 2018

Figure 3.15. *Pseudomonas aeruginosa*. Percentage (%) of invasive isolates with resistance to ceftazidime, by country, EU/EEA countries, 2018

Figure 3.16. *Pseudomonas aeruginosa*. Percentage (%) of invasive isolates with resistance to aminoglycosides, by country, EU/EEA countries, 2018

Figure 3.17. *Pseudomonas aeruginosa*. Percentage (%) of invasive isolates with resistance to carbapenems, by country, EU/EEA countries, 2018

Figure 3.18. *Pseudomonas aeruginosa*. Percentage (%) of invasive isolates with combined resistance (resistance to three or more antimicrobial groups among piperacillin ± tazobactam, ceftazidime, fluoroquinolones, aminoglycosides and carbapenems), by country, EU/EEA countries, 2018

Country	2015			2016			2017			2018		Trend	
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	2015- 2018*
Iceland	11	0.0	(0-28)	17	0.0	(0-20)	17	0.0	(0-20)	12	0.0	(0-26)	N/A
Denmark	441	4.1	(2-6)	460	3.5	(2-6)	484	2.9	(2-5)	489	2.9	(2-5)	
Norway	227	5.7	(3-10)	215	7.4	(4-12)	183	6.0	(3-11)	227	5.7	(3-10)	
United Kingdom	493	10.3	(8-13)	2039	6.0	(5-7)	2697	5.3	(4-6)	2631	5.8	(5-7)	1
Finland	333	7.2	(5-11)	351	9.4	(7-13)	377	6.4	(4-9)	391	6.6	(4-10)	
Netherlands	494	6.5	(4-9)	520	4.0	(3-6)	620	7.1	(5-9)	628	6.7	(5-9)	
Sweden	399	5.8	(4-9)	472	7.4	(5-10)	446	6.3	(4-9)	411	7.8	(5-11)	N/A
Ireland	195	9.2	(6-14)	243	12.8	(9-18)	286	14.0	(10-19)	270	8.1	(5-12)	
Estonia	16	6.3	(0-30)	53	17.0	(8-30)	55	14.5	(6-27)	48	8.3	(2-20)	N/A
Belgium	251	8.0	(5-12)	318	9.7	(7-14)	439	10.5	(8-14)	430	10.0	(7-13)	
Spain	871	9.1	(7-11)	817	9.4	(8-12)	814	8.4	(7-10)	1077	10.9	(9-13)	
Croatia	249	24.5	(19-30)	252	18.7	(14-24)	234	16.2	(12-22)	196	11.2	(7-16)	1
Luxembourg	27	0.0	(0-13)	40	12.5	(4-27)	54	11.1	(4-23)	56	12.5	(5-24)	
Germany	972	17.5	(15-20)	1423	17.2	(15-19)	1895	15.5	(14-17)	1742	13.5	(12-15)	1
Austria	675	11.9	(10-15)	689	13.8	(11-17)	721	13.5	(11-16)	729	13.6	(11-16)	
Slovenia	141	9.9	(6-16)	143	19.6	(13-27)	138	13.0	(8-20)	174	16.1	(11-22)	
Malta	25	16.0	(5-36)	40	12.5	(4-27)	37	21.6	(10-38)	29	17.2	(6-36)	
Lithuania	41	29.3	(16-46)	74	13.5	(7-23)	89	18.0	(11-28)	101	17.8	(11-27)	
EU/EEA (population-weighted mean)	12569	19.9	(19-21)	15 152	18.8	(18-19)	16580	18.2	(18-19)	18 678	18.3	(18-19)	↓ #
France	1915	16.1	(15-18)	1958	17.4	(16-19)	1690	19.2	(17-21)	1897	21.5	(20-23)	1
Portugal	1176	24.5	(22-27)	1230	22.7	(20-25)	1206	24.2	(22-27)	1096	21.9	(19-24)	
Czech Republic	463	25.3	(21-29)	458	25.3	(21-30)	409	23.0	(19-27)	537	23.3	(20-27)	
Cyprus	43	4.7	(1-16)	64	12.5	(6-23)	53	17.0	(8-30)	55	23.6	(13-37)	1
Italy	1074	29.5	(27-32)	1147	30.7	(28-33)	1 3 1 2	24.2	(22-27)	2938	23.9	(22-26)	Ť
Greece	638	22.3	(19-26)	692	28.3	(25-32)	813	29.6	(27-33)	844	24.3	(21-27)	
Hungary	747	26.9	(24-30)	720	23.6	(21-27)	721	24.3	(21-28)	791	24.3	(21-27)	
Bulgaria	55	27.3	(16-41)	55	40.0	(27-54)	69	33.3	(22-46)	89	32.6	(23-43)	
Latvia	13	23.1	(5-54)	15	26.7	(8-55)	14	35.7	(13-65)	39	35.9	(21-53)	N/A
Slovakia	257	42.4	(36-49)	168	36.9	(30-45)	187	42.8	(36-50)	236	36.9	(31-43)	
Poland	249	37.8	(32-44)	393	30.0	(26-35)	389	32.1	(28-37)	377	36.9	(32-42)	
Romania	78	59.0	(47-70)	86	48.8	(38-60)	131	53.4	(45-62)	138	49.3	(41-58)	

 Table 3.15. Pseudomonas aeruginosa. Total number of invasive isolates tested (N) and percentage with resistance to piperacillin ± tazobactam (%R), including 95% confidence intervals (95%CI), EU/EEA countries, 2015 to 2018

* $\ensuremath{\uparrow}$ and $\ensuremath{\checkmark}$ indicate significant increasing and decreasing trends, respectively.

Country	2015			2016			2017			2018		Trend	
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%Cl)	N	%R	(95%CI)	2015- 2018*
Malta	25	12.0	(3-31)	40	10.0	(3-24)	37	10.8	(3-25)	29	0.0	(0-12)	
Denmark	420	5.0	(3-8)	460	3.7	(2-6)	484	5.0	(3-7)	489	4.3	(3-6)	
Sweden	382	4.7	(3-7)	469	6.0	(4-9)	445	9.0	(6-12)	408	7.1	(5-10)	N/A
Iceland	12	8.3	(0-38)	17	17.6	(4-43)	17	11.8	(1-36)	12	8.3	(0-38)	N/A
Ireland	194	9.8	(6-15)	243	11.9	(8-17)	287	13.9	(10-18)	272	8.8	(6-13)	
Netherlands	502	5.8	(4-8)	543	6.1	(4-8)	657	9.9	(8-12)	670	9.4	(7-12)	1
United Kingdom	522	8.8	(7-12)	2 119	6.9	(6-8)	2802	7.7	(7-9)	2739	9.8	(9-11)	↑ #
Norway	230	5.2	(3-9)	227	5.7	(3-10)	205	4.9	(2-9)	250	10.4	(7-15)	1
Germany	970	14.3	(12-17)	1423	12.4	(11-14)	1895	13.9	(12-16)	1739	12.3	(11-14)	
Finland	302	8.9	(6-13)	292	7.9	(5-12)	356	11.2	(8-15)	376	12.8	(10-17)	↑ #
Lithuania	41	26.8	(14-43)	73	15.1	(8-25)	89	21.3	(13-31)	101	12.9	(7-21)	
Estonia	18	0.0	(0-19)	56	3.6	(0-12)	56	12.5	(5-24)	45	13.3	(5-27)	N/A
Belgium	261	11.1	(8-16)	366	14.5	(11-19)	430	10.5	(8-14)	451	14.0	(11-18)	
Austria	659	10.3	(8-13)	694	7.2	(5-9)	721	12.3	(10-15)	736	14.0	(12-17)	1
France	1939	19.1	(17-21)	1971	13.6	(12-15)	1709	15.1	(13-17)	1893	15.1	(13-17)	1
EU/EEA (population-weighted mean)	12681	20.9	(20-22)	15388	18.8	(18-19)	16870	20.2	(20-21)	19 0 2 3	19.7	(19-20)	
Spain	881	23.0	(20-26)	843	23.0	(20-26)	868	19.9	(17-23)	1102	20.1	(18-23)	1
Slovenia	141	14.2	(9-21)	143	20.3	(14-28)	123	20.3	(14-29)	174	21.8	(16-29)	
Luxembourg	28	17.9	(6-37)	40	12.5	(4-27)	56	12.5	(5-24)	59	22.0	(12-35)	
Italy	1080	24.6	(22-27)	1166	24.7	(22-27)	1390	25.1	(23-27)	2994	22.9	(21-24)	
Latvia	13	23.1	(5-54)	16	31.3	(11-59)	14	64.3	(35-87)	39	23.1	(11-39)	N/A
Portugal	1185	22.7	(20-25)	1227	20.1	(18-22)	1208	23.7	(21-26)	1104	23.7	(21-26)	
Cyprus	43	11.6	(4-25)	64	20.3	(11-32)	53	5.7	(1-16)	55	25.5	(15-39)	
Hungary	769	24.7	(22-28)	736	24.3	(21-28)	732	23.4	(20-27)	805	26.0	(23-29)	
Croatia	256	35.2	(29-41)	259	37.5	(32-44)	237	32.9	(27-39)	200	29.0	(23-36)	
Bulgaria	55	36.4	(24-50)	56	35.7	(23-50)	71	28.2	(18-40)	90	30.0	(21-41)	
Greece	662	34.1	(31-38)	702	34.6	(31-38)	816	35.3	(32-39)	856	33.1	(30-36)	
Czech Republic	464	30.0	(26-34)	464	34.7	(30-39)	411	30.2	(26-35)	539	33.4	(29-38)	
Poland	257	36.2	(30-42)	400	31.0	(26-36)	358	37.2	(32-42)	389	39.1	(34-44)	
Romania	92	62.0	(51-72)	89	51.7	(41-62)	132	62.1	(53-70)	155	52.3	(44-60)	
Slovakia	278	52.2	(46-58)	190	47.4	(40-55)	211	46.9	(40-54)	252	52.4	(46-59)	

Table 3.16. *Pseudomonas aeruginosa*. Total number of invasive isolates tested (N) and percentage with resistance to fluoroquinolones (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

* \uparrow and \downarrow indicate significant increasing and decreasing trends, respectively.

Country	2015			2016			2017			2018		Trend	
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	2015-2018*
Iceland	11	0.0	(0-28)	17	0.0	(0-20)	17	0.0	(0-20)	12	0.0	(0-26)	N/A
Netherlands	502	4.4	(3-7)	543	3.3	(2-5)	657	3.5	(2-5)	667	2.8	(2-4)	
Denmark	439	3.6	(2-6)	447	4.5	(3-7)	461	3.5	(2-6)	458	3.3	(2-5)	
Estonia	7	-	-	(-)	17.6	(4-43)	47	8.5	(2-20)	47	4.3	(1-15)	N/A
Finland	334	6.9	(4-10)	352	5.4	(3-8)	378	6.1	(4-9)	390	4.4	(3-7)	
United Kingdom	472	6.1	(4-9)	2021	4.3	(3-5)	2680	4.7	(4-6)	2621	4.9	(4-6)	
Sweden	379	4.5	(3-7)	473	7.4	(5-10)	446	4.5	(3-7)	412	6.1	(4-9)	N/A
Norway	216	5.6	(3-10)	224	7.1	(4-11)	197	5.1	(2-9)	240	6.3	(4-10)	
Belgium	226	6.2	(3-10)	320	7.8	(5-11)	431	7.2	(5-10)	441	7.5	(5-10)	
Ireland	195	7.2	(4-12)	243	10.7	(7-15)	272	9.6	(6-14)	261	8.4	(5-12)	
Luxembourg	28	7.1	(1-24)	40	5.0	(1-17)	56	12.5	(5-24)	59	8.5	(3-19)	
Spain	816	10.4	(8-13)	836	10.2	(8-12)	862	9.6	(8-12)	1087	8.7	(7-11)	
Germany	968	8.9	(7-11)	1 4 2 1	10.1	(9-12)	1883	9.8	(9-11)	1735	9.1	(8-11)	
Austria	577	9.9	(8-13)	628	11.3	(9-14)	620	8.7	(7-11)	729	10.3	(8-13)	
Lithuania	41	19.5	(9-35)	74	10.8	(5-20)	88	14.8	(8-24)	101	11.9	(6-20)	
France	1919	11.6	(10-13)	1956	11.3	(10-13)	1568	12.2	(11-14)	1892	13.0	(12-15)	
Malta	25	8.0	(1-26)	40	7.5	(2-20)	37	13.5	(5-29)	29	13.8	(4-32)	
EU/EEA (population-weighted mean)	12 376	15.4	(15-16)	15102	14.4	(14-15)	16 431	14.7	(14-15)	18773	14.1	(14-15)	↓ #
Slovenia	141	9.9	(6-16)	143	17.5	(12-25)	138	13.0	(8-20)	174	14.9	(10-21)	
Cyprus	43	4.7	(1-16)	64	10.9	(5-21)	53	13.2	(5-25)	55	16.4	(8-29)	
Croatia	248	18.5	(14-24)	240	20.8	(16-27)	231	19.5	(15-25)	195	17.9	(13-24)	
Portugal	1185	19.2	(17-22)	1228	18.0	(16-20)	1 2 1 6	18.6	(16-21)	1090	18.6	(16-21)	
Italy	1068	21.7	(19-24)	1160	23.0	(21-26)	1332	20.0	(18-22)	2974	19.9	(18-21)	
Bulgaria	52	26.9	(16-41)	54	38.9	(26-53)	71	38.0	(27-50)	90	20.0	(12-30)	
Czech Republic	464	19.6	(16-24)	464	19.2	(16-23)	411	13.4	(10-17)	539	20.4	(17-24)	
Greece	660	19.4	(16-23)	696	33.6	(30-37)	814	24.9	(22-28)	853	22.3	(20-25)	
Hungary	763	24.2	(21-27)	735	20.7	(18-24)	729	23.9	(21-27)	804	22.5	(20-26)	
Poland	259	27.8	(22-34)	401	19.5	(16-24)	415	24.6	(21-29)	390	26.9	(23-32)	
Slovakia	247	34.8	(29-41)	164	31.1	(24-39)	180	35.6	(29-43)	237	32.1	(26-38)	
Latvia	13	23.1	(5-54)	15	26.7	(8-55)	14	42.9	(18-71)	39	33.3	(19-50)	N/A
Romania	85	65.9	(55-76)	86	44.2	(33-55)	127	55.9	(47-65)	152	46.7	(39-55)	↓ #

Table 3.17. *Pseudomonas aeruginosa*. Total number of invasive isolates tested (N) and percentage with resistance to ceftazidime (% R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

* $\ensuremath{\uparrow}$ and $\ensuremath{\downarrow}$ indicate significant increasing and decreasing trends, respectively.

Country	2015			2016			2017			2018		Trend	
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%Cl)	2015- 2018*
Malta	25	16.0	(5-36)	40	7.5	(2-20)	37	10.8	(3-25)	29	0.0	(0-12)	
Iceland	12	0.0	(0-26)	17	0.0	(0-20)	17	0.0	(0-20)	12	0.0	(0-26)	N/A
Denmark	441	2.3	(1-4)	460	1.7	(1-3)	484	1.0	(0-2)	489	0.6	(0-2)	1
Norway	219	0.9	(0-3)	213	0.9	(0-3)	183	0.5	(0-3)	236	0.8	(0-3)	
Finland	341	1.8	(1-4)	352	2.3	(1-4)	378	1.9	(1-4)	391	1.0	(0-3)	
Sweden	387	1.3	(0-3)	471	0.8	(0-2)	444	0.9	(0-2)	411	1.0	(0-2)	N/A
Netherlands	502	2.8	(2-5)	541	2.8	(2-5)	657	4.0	(3-6)	670	2.4	(1-4)	
Germany	966	7.1	(6-9)	1 4 2 1	6.8	(6-8)	1869	4.8	(4-6)	1739	3.6	(3-5)	\downarrow
Luxembourg	28	3.6	(0-18)	40	15.0	(6-30)	56	5.4	(1-15)	53	3.8	(0-13)	
Estonia	17	5.9	(0-29)	54	7.4	(2-18)	56	5.4	(1-15)	48	4.2	(1-14)	N/A
United Kingdom	539	5.2	(3-7)	2140	3.6	(3-4)	2831	3.9	(3-5)	2781	4.5	(4-5)	
Ireland	195	4.1	(2-8)	243	10.3	(7-15)	288	8.7	(6-13)	273	5.5	(3-9)	
Austria	678	6.3	(5-8)	692	6.1	(4-8)	717	5.0	(4-7)	729	6.3	(5-8)	
Slovenia	141	9.2	(5-15)	143	13.3	(8-20)	138	8.7	(5-15)	174	6.9	(4-12)	
Cyprus	43	0.0	(0-8)	64	4.7	(1-13)	53	1.9	(0-10)	55	7.3	(2-18)	
Belgium	218	6.0	(3-10)	327	11.0	(8-15)	377	7.7	(5-11)	406	8.4	(6-12)	
France	1950	14.1	(13-16)	1976	10.7	(9-12)	1713	10.9	(9-12)	1898	9.3	(8-11)	\downarrow
Lithuania	41	24.4	(12-40)	74	14.9	(8-25)	89	13.5	(7-22)	101	9.9	(5-17)	↓ #
Spain	883	16.4	(14-19)	843	15.3	(13-18)	864	12.4	(10-15)	1 121	11.6	(10-14)	1
EU/EEA (population-weighted mean)	12703	15.3	(15-16)	15408	14.1	(14-15)	16 898	13.2	(13-14)	18 999	11.8	(11-12)	\downarrow
Portugal	1191	13.5	(12-16)	1230	11.6	(10-14)	1210	12.1	(10-14)	1109	11.9	(10-14)	
Italy	1050	17.2	(15-20)	1203	19.1	(17-21)	1428	18.0	(16-20)	2983	12.8	(12-14)	\downarrow
Hungary	766	20.5	(18-24)	740	17.6	(15-21)	734	14.6	(12-17)	784	17.9	(15-21)	
Czech Republic	464	21.3	(18-25)	464	18.8	(15-23)	411	14.4	(11-18)	539	19.3	(16-23)	
Croatia	256	34.0	(28-40)	260	33.5	(28-40)	237	26.6	(21-33)	199	21.6	(16-28)	1
Bulgaria	47	27.7	(16-43)	39	48.7	(32-65)	71	28.2	(18-40)	90	24.4	(16-35)	
Poland	258	30.6	(25-37)	367	25.6	(21-30)	384	25.5	(21-30)	384	26.0	(22-31)	
Greece	667	26.4	(23-30)	701	28.0	(25-31)	815	30.2	(27-33)	856	26.5	(24-30)	
Latvia	11	9.1	(0-41)	15	20.0	(4-48)	14	42.9	(18-71)	39	28.2	(15-45)	N/A
Slovakia	277	41.9	(36-48)	191	33.0	(26-40)	211	36.0	(30-43)	254	37.4	(31-44)	
Romania	90	63.3	(53-73)	87	50.6	(40-61)	132	57.6	(49-66)	146	50.7	(42-59)	

 Table 3.18. Pseudomonas aeruginosa. Total number of invasive isolates tested (N) and percentage with resistance to aminoglycosides (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

* $\ensuremath{\uparrow}$ and $\ensuremath{\checkmark}$ indicate significant increasing and decreasing trends, respectively.

Country –	2015			2016			2017			2018		Trend	
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	2015- 2018*
Iceland	12	0.0	(0-26)	17	5.9	(0-29)	17	0.0	(0-20)	12	0.0	(0-26)	N/A
Malta	25	16.0	(5-36)	40	12.5	(4-27)	37	10.8	(3-25)	29	3.4	(0-18)	
Sweden	398	6.5	(4-9)	472	11.0	(8-14)	446	9.0	(6-12)	412	4.4	(3-7)	N/A
Norway	228	5.7	(3-10)	225	6.7	(4-11)	205	3.4	(1-7)	250	4.8	(3-8)	
Finland	341	4.7	(3-8)	352	6.0	(4-9)	377	6.1	(4-9)	391	4.9	(3-7)	
Netherlands	500	4.0	(2-6)	543	3.7	(2-6)	655	4.4	(3-6)	667	5.1	(4-7)	
Denmark	437	4.6	(3-7)	458	2.4	(1-4)	484	2.5	(1-4)	422	5.2	(3-8)	
United Kingdom	499	2.4	(1-4)	2108	5.1	(4-6)	2804	5.7	(5-7)	2748	6.0	(5-7)	1
Ireland	195	9.2	(6-14)	243	6.2	(3-10)	288	9.0	(6-13)	273	6.6	(4-10)	
Belgium	256	3.9	(2-7)	365	9.6	(7-13)	474	8.2	(6-11)	487	7.4	(5-10)	
Luxembourg	24	8.3	(1-27)	31	6.5	(1-21)	56	10.7	(4-22)	54	11.1	(4-23)	
Germany	971	14.7	(13-17)	1422	14.5	(13-16)	1892	12.6	(11-14)	1740	12.1	(11-14)	$\mathbf{\downarrow}$
Cyprus	43	20.9	(10-36)	64	18.8	(10-30)	53	17.0	(8-30)	55	12.7	(5-24)	
Austria	680	12.2	(10-15)	696	12.9	(11-16)	725	13.9	(11-17)	736	12.8	(10-15)	
Slovenia	141	15.6	(10-23)	143	19.6	(13-27)	138	17.4	(11-25)	174	14.9	(10-21)	
Portugal	1 191	19.8	(18-22)	1227	19.2	(17-21)	1 2 1 5	18.3	(16-21)	1108	15.7	(14-18)	¥
Italy	1082	23.0	(21-26)	1206	23.5	(21-26)	1434	19.9	(18-22)	3014	15.8	(15-17)	Ŷ
France	1925	16.4	(15-18)	1968	15.6	(14-17)	1710	13.9	(12-16)	1896	16.0	(14-18)	
Estonia	16	12.5	(2-38)	54	20.4	(11-34)	55	9.1	(3-20)	48	16.7	(7-30)	N/A
EU/EEA (population-weighted mean)	12719	19.4	(19-20)	15 4 5 6	18.2	(18-19)	17 0 2 9	17.4	(17-18)	19045	17.2	(17-18)	Ŷ
Czech Republic	464	10.6	(8-14)	464	8.8	(6-12)	411	14.8	(12-19)	539	18.0	(15-22)	1
Spain	872	22.7	(20-26)	842	21.4	(19-24)	861	18.4	(16-21)	1120	18.6	(16-21)	Ŷ
Lithuania	41	26.8	(14-43)	74	16.2	(9-27)	89	24.7	(16-35)	101	21.8	(14-31)	
Bulgaria	55	25.5	(15-39)	56	30.4	(19-44)	71	25.4	(16-37)	90	25.6	(17-36)	
Croatia	257	38.5	(33-45)	260	42.3	(36-49)	238	30.7	(25-37)	199	27.6	(22-34)	\downarrow
Latvia	13	15.4	(2-45)	16	31.3	(11-59)	14	57.1	(29-82)	39	28.2	(15-45)	N/A
Poland	254	37.0	(31-43)	397	26.2	(22-31)	393	24.2	(20-29)	374	33.2	(28-38)	
Hungary	770	35.8	(32-39)	739	33.3	(30-37)	733	36.6	(33-40)	807	37.3	(34-41)	
Greece	675	40.4	(37-44)	699	42.1	(38-46)	821	39.3	(36-43)	856	37.5	(34-41)	
Slovakia	262	51.9	(46-58)	182	42.3	(35-50)	202	47.0	(40-54)	248	44.0	(38-50)	
Romania	92	66.3	(56-76)	93	51.6	(41-62)	131	63.4	(54-72)	156	55.1	(47-63)	

 Table 3.19. Pseudomonas aeruginosa. Total number of invasive isolates tested (N) and percentage with resistance to carbapenems (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

* $\ensuremath{\uparrow}$ and $\ensuremath{\downarrow}$ indicate significant increasing and decreasing trends, respectively.

Table 3.20. *Pseudomonas aeruginosa*. Total number of invasive isolates tested (N) with combined resistance (resistance to three or more antimicrobial groups among piperacillin ± tazobactam, ceftazidime, fluoroquinolones, aminoglycosides and carbapenems) including 95% confidence intervals (95% CI), by country, EU/EEA countries, 2015 to 2018

Country	2015			2016			2017			2018		Trend	
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%Cl)	N	%R	(95%Cl)	2015- 2018*
Iceland	12	0.0	(0-26)	17	0.0	(0-20)	17	0.0	(0-20)	12	0.0	(0-26)	N/A
Denmark	441	2.3	(1-4)	460	1.3	(0-3)	484	0.4	(0-1)	489	1.2	(0-3)	
Finland	341	4.7	(3-8)	352	3.4	(2-6)	378	3.4	(2-6)	391	1.8	(1-4)	1
Sweden	386	2.6	(1-5)	472	5.3	(3-8)	446	3.1	(2-5)	412	1.9	(1-4)	N/A
Netherlands	502	2.8	(2-5)	543	2.6	(1-4)	657	2.1	(1-4)	670	2.1	(1-3)	
Norway	230	1.3	(0-4)	227	2.6	(1-6)	205	1.5	(0-4)	250	2.4	(1-5)	
United Kingdom	501	3.8	(2-6)	2131	2.5	(2-3)	2830	2.4	(2-3)	2771	3.0	(2-4)	
Ireland	195	5.1	(2-9)	243	8.6	(5-13)	288	7.6	(5-11)	273	3.3	(2-6)	
Malta	25	12.0	(3-31)	40	5.0	(1-17)	37	8.1	(2-22)	29	3.4	(0-18)	
Luxembourg	28	3.6	(0-18)	40	2.5	(0-13)	56	5.4	(1-15)	59	3.4	(0-12)	
Belgium	260	4.6	(2-8)	366	6.3	(4-9)	439	6.6	(4-9)	454	5.3	(3-8)	
Germany	971	7.9	(6-10)	1423	7.6	(6-9)	1 895	7.0	(6-8)	1740	6.0	(5-7)	↓ #
Estonia	15	0.0	(0-22)	56	3.6	(0-12)	57	8.8	(3-19)	48	6.3	(1-17)	N/A
Austria	680	6.8	(5-9)	697	6.7	(5-9)	724	7.0	(5-9)	737	7.2	(5-9)	
Spain	874	14.2	(12-17)	843	14.5	(12-17)	863	10.9	(9-13)	1120	10.9	(9-13)	\downarrow
France	1940	12.0	(11-14)	1972	10.7	(9-12)	1709	10.6	(9-12)	1894	11.0	(10-12)	
Slovenia	141	7.1	(3-13)	143	15.4	(10-22)	138	10.9	(6-17)	174	11.5	(7-17)	
Lithuania	41	24.4	(12-40)	74	10.8	(5-20)	89	16.9	(10-26)	101	11.9	(6-20)	
EU/EEA (population-weighted mean)	12 741	15.1	(14-16)	15513	13.6	(13-14)	17 051	13.3	(13-14)	19 119	12.8	(12-13)	1
Italy	1082	20.0	(18-22)	1206	20.1	(18-23)	1436	17.5	(16-20)	3006	14.9	(14-16)	\checkmark
Portugal	1186	16.9	(15-19)	1230	14.8	(13-17)	1 214	16.1	(14-18)	1108	15.3	(13-18)	
Cyprus	43	2.3	(0-12)	64	4.7	(1-13)	53	9.4	(3-21)	55	16.4	(8-29)	1
Croatia	257	28.0	(23-34)	260	31.9	(26-38)	238	21.4	(16-27)	200	19.0	(14-25)	1
Hungary	770	20.9	(18-24)	740	19.1	(16-22)	735	18.1	(15-21)	807	20.2	(17-23)	
Czech Republic	464	19.0	(15-23)	464	19.6	(16-24)	411	17.3	(14-21)	539	21.9	(18-26)	
Bulgaria	55	29.1	(18-43)	56	35.7	(23-50)	71	26.8	(17-39)	90	25.6	(17-36)	
Greece	666	28.4	(25-32)	702	31.6	(28-35)	816	32.4	(29-36)	855	28.7	(26-32)	
Poland	260	29.6	(24-36)	403	20.6	(17-25)	417	22.8	(19-27)	394	29.4	(25-34)	
Latvia	13	15.4	(2-45)	16	18.8	(4-46)	14	42.9	(18-71)	39	30.8	(17-48)	N/A
Slovakia	270	40.7	(35-47)	183	33.9	(27-41)	202	39.1	(32-46)	248	35.9	(30-42)	
Romania	92	63.0	(52-73)	90	48.9	(38-60)	132	59.1	(50-68)	154	49.4	(41-58)	

* $\ensuremath{\uparrow}$ and $\ensuremath{\checkmark}$ indicate significant increasing and decreasing trends, respectively.

3.4 Acinetobacter species

The Acinetobacter genus consists of a large number of species which can be divided into two complexes: the Acinetobacter baumannii complex – the group including most of the disease-causing species (A. baumannii, A. pittii and A. nosocomialis) – and the generally less pathogenic Acinetobacter non-baumannii group. The correct identification of Acinetobacter isolates at species level is difficult, although it is possible using mass spectrometry and genotypic methods.

Species belonging to the *Acinetobacter baumannii* group are opportunistic pathogens primarily associated with healthcare-associated infections including ventilator-associated pneumonia, central-line-associated bloodstream infections, urinary tract infections and wound infections. Risk factors for infection include advanced age, presence of serious underlying disease, immune suppression, major trauma or burn injuries, invasive procedures, presence of indwelling catheters, mechanical ventilation, extended hospital stay and previous administration of antibiotics.

Acinetobacter species, particularly those belonging to the A. baumannii-complex, are intrinsically resistant to most antimicrobial agents due to their selective ability to prevent various molecules from penetrating their outer membrane. The antimicrobial groups that remain active include some fluoroquinolones (e.g. ciprofloxacin and levofloxacin), aminoglycosides (e.g. gentamicin, tobramycin and amikacin), carbapenems (imipenem and meropenem), polymyxins (colistin and polymyxin B) and, possibly, sulbactam and tigecycline. Acquired resistance results from mutational changes in the chromosome and acquisition of plasmid-mediated resistance genes.

Antimicrobial resistance

More than half of the *Acinetobacter* species isolates reported by EU/EEA countries to EARS-Net for 2018 (56.4%) were resistant to at least one of the antimicrobial groups under regular surveillance (i.e. fluoroquinolones, aminoglycosides and carbapenems) (Table 3.21). The highest EU/EEA population-weighted mean resistance percentage in 2018 was reported for fluoroquinolones (36.2%), followed by aminoglycosides (31.9%) and carbapenems (31.9%) (Tables 3.22–3.24).

There was a significantly decreasing trend in the EU/EEA population-weighted mean percentage of fluoroquinolone resistance; however, the trend did not remain statistically significant when only considering the laboratories that consistently reported data for all four years (Table 3.22).

Resistance to one or two antimicrobial groups was considerably less common than combined resistance to all three groups under surveillance (Table 3.21). In 2018, the population-weighted EU/EEA mean percentage for combined resistance to fluoroquinolones, aminoglycosides and carbapenems was 28.8% (Table 3.25). Large inter-country variations were noted for all antimicrobial groups under regular surveillance, with generally higher resistance percentages reported from southern and eastern Europe than from northern Europe (Figures 3.20–3.23). Single resistance to one antimicrobial group was less common in countries reporting comparatively low proportions of fully susceptible isolates (Figure 3.19).

Discussion and conclusion

Of all the microorganisms under surveillance by EARS-Net *Acinetobacter* species is the one for which the inter-country variation in resistance percentages is the most extreme. In 2018, the percentage of isolates resistant to at least one of the antimicrobial groups under regular surveillance (fluoroquinolones, aminoglycosides or carbapenems) ranged between 0% and 96.1%, depending on the reporting country. In general, the highest resistance percentages were reported from the Baltic countries and from southern and south-eastern Europe. The high levels of resistance in these countries

Resistance pattern	Number of isolates	% of total**
Fully susceptible	2721	43.6
Single resistance (to indicated antimicrobial group)		
Total (any single resistance)	238	3.8
Fluoroquinolones	134	2.1
Aminoglycosides	67	1.1
Carbapenems	37	0.6
Resistance to two antimicrobial groups		
Total (any two-group combinations)	427	6.8
Fluoroquinolones + carbapenems	318	5.1
Fluoroquinolones + aminoglycosides	104	1.7
Aminoglycosides + carbapenems	5	0.1
Resistance to three antimicrobial groups		
Fluoroquinolones + aminoglycosides + carbapenems	2848	45.7

 Table 3.21. Acinetobacter spp. Total number of invasive isolates tested (N)* and percentage resistance (%) per phenotype, EU/EEA countries, 2018

* Only isolates with complete susceptibility information for fluoroquinolones, aminoglycosides and carbapenems were included in the analysis.

** Not adjusted for population differences in the reporting countries.

are of great concern as the most frequently reported resistance phenotype was combined resistance to all three antimicrobial groups under regular surveillance, severely limiting options for patient treatment. As *Acinetobacter* species is intrinsically resistant to many antimicrobial agents, additional acquired resistance is further complicating treatment of serious infections in already vulnerable patient groups.

The presence of multidrug-resistant *Acinetobacter* species in the healthcare environment is problematic: the bacterium can persist in the environment for long periods and is notoriously difficult to eradicate once established. ECDC's risk assessment on carbapenem-resistant *Acinetobacter baumannii* in healthcare highlights the need for increased efforts to face this significant threat to patients and healthcare systems in all EU/EEA countries. The document outlines options to reduce risks through clinical management; prevention of transmission in hospitals and other healthcare settings; prevention of cross-border transmission and improvement in the preparedness of EU/EEA countries. Options for response presented in the risk assessment include timely laboratory reporting; screening and pre-emptive isolation of high-risk patients; high-standard infection control and antimicrobial stewardship programmes [38].

Figure 3.19. Acinetobacter spp. Distribution of isolates: fully susceptible and resistant to one, two and three antimicrobial groups (among isolates tested against fluoroquinolones, aminoglycosides and carbapenems), EU/EEA countries, 2018

Only data from isolates tested against all included antimicrobial groups included in analysis.

Figure 3.20. Acinetobacter spp. Percentage (%) of invasive isolates with resistance to fluoroquinolones, by country, EU/EEA countries, 2018

Figure 3.21. Acinetobacter spp. Percentage (%) of invasive isolates with resistance to aminoglycosides, by country, EU/EEA countries, 2018

43

Figure 3.22. *Acinetobacter* spp. Percentage (%) of invasive isolates with resistance to carbapenems, by country, EU/EEA countries, 2018

Figure 3.23. Acinetobacter spp. Percentage (%) of invasive isolates with combined resistance to fluoroquinolones, aminoglycosides and carbapenems, by country, EU/EEA countries, 2018

44

Country		2015			2016			2017			2018		Trend
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	2015- 2018*
Norway	32	9,4	(2-25)	33	3.0	(0-16)	31	0.0	(0-11)	32	0.0	(0-11)	Ŷ
Ireland	83	4.8	(1-12)	68	1.5	(0-8)	66	7.6	(3-17)	61	0.0	(0-6)	
Finland	43	2.3	(0-12)	28	0.0	(0-12)	37	2.7	(0-14)	28	0.0	(0-12)	
Luxembourg	8	**	(**)	8	**	(**)	8	**	(**)	11	0.0	(0-28)	N/A
United Kingdom	139	7.2	(4-13)	589	4.4	(3-6)	793	6.3	(5-8)	720	2.9	(2-4)	
Germany	339	8.6	(6-12)	460	5.7	(4-8)	536	6.5	(5-9)	511	6.8	(5-9)	
Sweden	26	3.8	(0-20)	86	4.7	(1-11)	54	0.0	(0-7)	55	7.3	(2-18)	N/A
Austria	61	16.4	(8-28)	81	16.0	(9-26)	74	9.5	(4-19)	91	7.7	(3-15)	\downarrow
Netherlands	74	6.8	(2-15)	106	2.8	(1-8)	122	3.3	(1-8)	133	8.3	(4-14)	
Denmark	68	5.9	(2-14)	72	2.8	(0-10)	68	1.5	(0-8)	55	9.1	(3-20)	
France	430	13.5	(10-17)	452	15.0	(12-19)	473	12.3	(9-16)	491	12.0	(9-15)	
Belgium	26	0.0	(0-13)	78	7.7	(3-16)	130	10.8	(6-17)	134	12.7	(8-20)	1 #
Czech Republic	60	18.3	(10-30)	57	17.5	(9-30)	55	20	(10-33)	91	24.2	(16-34)	
Slovenia	31	58.1	(39-75)	60	55	(42-68)	36	47.2	(30-65)	39	28.2	(15-45)	Ŷ
Portugal	308	55.8	(50-61)	206	50.5	(43-58)	172	38.4	(31-46)	123	34.1	(26-43)	\downarrow
EU/EEA (population-weighted mean)	5 0 1 0	38.6	(37-40)	5568	37.5	(36-39)	6088	37.4	(36-39)	6 471	36.2	(35-37)	↓ #
Estonia	4	**	(**)	5	**	(**)	11	36.4	(11-69)	11	45.5	(17-77)	N/A
Slovakia	154	51.9	(44-60)	115	46.1	(37-56)	126	52.4	(43-61)	141	56.0	(47-64)	
Spain	95	64.2	(54-74)	106	68.9	(59-78)	92	68.5	(58-78)	81	56.8	(45-68)	
Hungary	464	68.1	(64-72)	397	68.0	(63-73)	352	67.0	(62-72)	356	66.0	(61-71)	
Bulgaria	131	78.6	(71-85)	106	67.9	(58-77)	92	95.7	(89-99)	110	78.2	(69-85)	
Latvia	60	78.3	(66-88)	68	85.3	(75-93)	33	81.8	(65-93)	47	80.9	(67-91)	
Italy	664	81.6	(78-85)	697	79.9	(77-83)	804	79.2	(76-82)	1 368	81.1	(79-83)	
Poland	243	88.1	(83-92)	393	83.0	(79-87)	348	83.0	(79-87)	268	86.9	(82-91)	
Romania	189	82.5	(76-88)	157	91.1	(85-95)	183	89.1	(84-93)	218	88.1	(83-92)	
Cyprus	60	83.3	(71-92)	28	71.4	(51-87)	50	76.0	(62-87)	55	89.1	(78-96)	
Lithuania	73	93.2	(85-98)	87	87.4	(79-94)	86	91.9	(84-97)	88	90.9	(83-96)	
Greece	946	94.9	(93-96)	862	94.9	(93-96)	1060	96	(95-97)	998	93.5	(92-95)	
Croatia	196	92.3	(88-96)	176	94.9	(91-98)	204	98	(95-99)	155	96.1	(92-99)	1
Malta	15	13.3	(2-40)	7	**	(**)	9	**	(**)	9	**	(**)	N/A
Iceland	6	**	(**)	3	**	(**)	6	**	(**)	2	**	(**)	N/A

 Table 3.22. Acinetobacter spp. Total number of invasive isolates tested (N) and percentage with resistance to fluoroquinolones (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

–: No data * \uparrow and \downarrow indicate significant increasing and decreasing trends, respectively.

N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period. ** Less than 10 isolates reported, no percentage calculated.

Country -	2015			2016			2017				Trend		
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	2015- 2018*
Luxembourg	8	**	(**)	8	**	(**)	8	**	(**)	11	0.0	(0-28)	N/A
Norway	32	9.4	(2-25)	32	3.1	(0-16)	31	0.0	(0-11)	32	0.0	(0-11)	\downarrow
Germany	331	5.4	(3-8)	436	3.0	(2-5)	498	3.4	(2-5)	493	3.4	(2-5)	
Ireland	80	3.8	(1-11)	63	1.6	(0-9)	62	3.2	(0-11)	56	3.6	(0-12)	
United Kingdom	153	2.0	(0-6)	598	3.3	(2-5)	790	4.6	(3-6)	726	5.1	(4-7)	↑#
Netherlands	74	10.8	(5-20)	103	3.9	(1-10)	120	2.5	(1-7)	132	5.3	(2-11)	
Sweden	26	3.8	(0-20)	85	5.9	(2-13)	51	0	(0-7)	55	5.5	(2-15)	N/A
Belgium	15	0.0	(0-22)	66	1.5	(0-8)	99	13.1	(7-21)	122	7.4	(3-14)	N/A
Finland	42	2.4	(0-13)	28	3.6	(0-18)	36	0.0	(0-10)	27	7.4	(1-24)	
Denmark	63	4.8	(1-13)	70	0.0	(0-5)	68	0.0	(0-5)	53	7.5	(2-18)	
Austria	63	6.3	(2-15)	81	16.0	(9-26)	75	9.3	(4-18)	92	8.7	(4-16)	
France	431	11.1	(8-14)	449	12.2	(9-16)	474	9.1	(7-12)	482	8.9	(7-12)	
Slovenia	31	41.9	(25-61)	60	43.3	(31-57)	36	41.7	(26-59)	39	20.5	(9-36)	\downarrow
Czech Republic	60	15	(7-27)	57	8.8	(3-19)	55	12.7	(5-24)	91	22.0	(14-32)	
Portugal	310	46.5	(41-52)	206	39.3	(33-46)	168	28.6	(22-36)	126	25.4	(18-34)	\downarrow
EU/EEA (population-weighted mean)	4981	32.4	(31-34)	5534	32.8	(32-34)	6032	32.2	(31-33)	6438	31.9	(31-33)	
Slovakia	154	42.9	(35-51)	115	40.9	(32-50)	125	40.0	(31-49)	144	44.4	(36-53)	
Estonia	2	**	(**)	5	**	(**)	9	**	(**)	11	45.5	(17-77)	N/A
Hungary	465	60.6	(56-65)	401	59.1	(54-64)	358	56.1	(51-61)	343	48.7	(43-54)	\downarrow
Spain	96	49.0	(39-59)	106	50.9	(41-61)	92	52.2	(42-63)	81	49.4	(38-61)	
Latvia	61	59.0	(46-71)	81	77.8	(67-86)	33	78.8	(61-91)	48	60.4	(45-74)	
Poland	245	70.2	(64-76)	387	72.6	(68-77)	344	72.7	(68-77)	285	67.4	(62-73)	
Bulgaria	116	74.1	(65-82)	79	81.0	(71-89)	92	89.1	(81-95)	110	73.6	(64-82)	
Cyprus	59	74.6	(62-85)	28	57.1	(37-76)	50	76.0	(62-87)	57	75.4	(62-86)	
Italy	656	74.7	(71-78)	704	76.4	(73-80)	836	76.1	(73-79)	1369	77.0	(75-79)	
Romania	188	80.9	(74-86)	152	89.5	(83-94)	183	83.6	(77-89)	210	80.0	(74-85)	
Greece	945	83.7	(81-86)	878	85.0	(82-87)	1064	85.6	(83-88)	1003	81.6	(79-84)	
Lithuania	73	90.4	(81-96)	87	82.8	(73-90)	86	81.4	(72-89)	87	85.1	(76-92)	
Croatia	197	88.3	(83-92)	182	83.0	(77-88)	206	84.0	(78-89)	153	91.5	(86-95)	
Malta	15	13.3	(2-40)	7	**	(**)	9	**	(**)	8	**	(**)	N/A
Iceland	6	**	(**)	3	**	(**)	6	**	(**)	2	**	(**)	N/A

 Table 3.23. Acinetobacter spp. Total number of invasive isolates tested (N) and percentage with resistance to aminoglycosides (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

–: No data * \bigstar and \clubsuit indicate significant increasing and decreasing trends, respectively.

N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period. ** Less than 10 isolates reported, no percentage calculated.

Country -	2015			2016			2017			2018			Trend
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%Cl)	N	%R	(95%Cl)	2015- 2018*
Finland	43	2.3	(0-12)	28	0.0	(0-12)	37	2.7	(0-14)	28	0.0	(0-12)	
Norway	32	9.4	(2-25)	33	0.0	(0-11)	31	0.0	(0-11)	32	0.0	(0-11)	1
Ireland	84	6.0	(2-13)	65	0.0	(0-6)	63	6.3	(2-15)	60	1.7	(0-9)	
United Kingdom	132	0.8	(0-4)	584	1.5	(1-3)	782	2.8	(2-4)	714	1.8	(1-3)	
Sweden	34	2.9	(0-15)	84	1.2	(0-6)	54	0.0	(0-7)	54	3.7	(0-13)	N/A
Belgium	24	0.0	(0-14)	78	2.6	(0-9)	131	6.9	(3-13)	132	3.8	(1-9)	
Germany	337	6.5	(4-10)	452	4.9	(3-7)	540	4.1	(3-6)	519	4.4	(3-7)	
Austria	64	9.4	(4-19)	81	12.3	(6-22)	75	6.7	(2-15)	91	4.4	(1-11)	
Netherlands	73	4.1	(1-12)	104	0.0	(0-3)	121	0.8	(0-5)	131	4.6	(2-10)	
Denmark	65	4.6	(1-13)	69	0.0	(0-5)	66	0.0	(0-5)	47	6.4	(1-18)	
France	428	5.6	(4-8)	450	7.1	(5-10)	469	6.2	(4-9)	490	6.5	(5-9)	
Slovenia	31	38.7	(22-58)	60	43.3	(31-57)	36	41.7	(26-59)	39	17.9	(8-34)	1
Czech Republic	60	6.7	(2-16)	57	1.8	(0-9)	55	12.7	(5-24)	91	19.8	(12-29)	1
Estonia	3	**	(**)	8	**	(**)	15	33.3	(12-62)	14	28.6	(8-58)	N/A
Portugal	307	57.7	(52-63)	206	51.9	(45-59)	172	40.7	(33-48)	127	30.7	(23-40)	Ŷ
EU/EEA (population-weighted mean)	5036	32.1	(31-33)	5562	32.6	(31-34)	6177	33.2	(32-34)	6501	31.9	(31-33)	
Slovakia	142	28.2	(21-36)	109	28.4	(20-38)	120	31.7	(23-41)	141	44.0	(36-53)	1
Spain	95	53.7	(43-64)	106	62.3	(52-71)	92	66.3	(56-76)	81	54.3	(43-65)	
Hungary	467	55.2	(51-60)	401	58.6	(54-63)	358	52.5	(47-58)	357	55.2	(50-60)	
Poland	244	65.6	(59-72)	391	66.0	(61-71)	344	67.4	(62-72)	278	67.3	(61-73)	
Bulgaria	130	73.8	(65-81)	103	74.8	(65-83)	92	80.4	(71-88)	110	74.5	(65-82)	
Latvia	61	68.9	(56-80)	82	73.2	(62-82)	34	79.4	(62-91)	51	78.4	(65-89)	
Italy	664	78.3	(75-81)	702	78.5	(75-81)	868	78.7	(76-81)	1383	79.2	(77-81)	
Cyprus	59	83.1	(71-92)	28	71.4	(51-87)	50	76.0	(62-87)	57	84.2	(72-93)	
Romania	189	81.5	(75-87)	160	85.0	(79-90)	182	87.4	(82-92)	218	85.3	(80-90)	
Lithuania	73	80.8	(70-89)	87	81.6	(72-89)	87	88.5	(80-94)	88	89.8	(81-95)	
Greece	983	93.5	(92-95)	861	95.4	(94-97)	1095	94.8	(93-96)	1 0 1 3	92.4	(91-94)	
Croatia	200	89.0	(84-93)	181	94.5	(90-97)	208	96.2	(93-98)	155	95.5	(91-98)	1
Iceland	6	**	(**)	3	**	(**)	6	**	(**)	2	**	(**)	N/A
Luxembourg	7	**	(**)	8	**	(**)	8	**	(**)	6	**	(**)	N/A
Malta	15	13.3	(2-40)	7	**	(**)	9	**	(**)	9	**	(**)	N/A

 Table 3.24. Acinetobacter spp. Total number of invasive isolates tested (N) and percentage with resistance to carbapenems (%R), including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

–: No data * \bigstar and \clubsuit indicate significant increasing and decreasing trends, respectively.

indicates a significant trend in the overall data; when only data from laboratories consistently reporting all four years are included, no trend could be detected. N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period.

** Less than 10 isolates reported, no percentage calculated.

Table 3.25. Acinetobacter spp. Total number of invasive isolates tested (N) and percentage with combined resistance to fluoroquinolones, aminoglycosides and carbapenems (%R), including 95% confidence intervals (95% CI), by country, EU/EEA countries, 2015 to 2018

Country		2015		2016			2017				Trend		
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	2015- 2018*
Ireland	75	1.3	(0-7)	61	0.0	(0-6)	59	1.7	(0-9)	55	0.0	(0-6)	
Finland	42	2.4	(0-13)	28	0.0	(0-12)	36	0.0	(0-10)	27	0.0	(0-13)	
Norway	32	9.4	(2-25)	32	0.0	(0-11)	31	0.0	(0-11)	32	0.0	(0-11)	\downarrow
United Kingdom	131	0.0	(0-3)	558	0.9	(0-2)	746	1.7	(1-3)	676	0.9	(0-2)	
Germany	328	3.7	(2-6)	435	2.3	(1-4)	495	1.2	(0-3)	493	2.2	(1-4)	
Belgium	13	0.0	(0-25)	64	0.0	(0-6)	98	7.1	(3-14)	120	3.3	(1-8)	N/A
Sweden	26	3.8	(0-20)	84	1.2	(0-6)	51	0	(0-7)	54	3.7	(1-13)	N/A
Denmark	60	3.3	(0-12)	67	0.0	(0-5)	66	0.0	(0-5)	46	4.3	(1-15)	
Austria	61	4.9	(1-14)	81	8.6	(4-17)	74	6.8	(2-15)	88	4.5	(1-11)	
Netherlands	73	4.1	(1-12)	100	0.0	(0-4)	120	0.8	(0-5)	130	4.6	(2-10)	
France	424	5.2	(3-8)	447	6.7	(5-9)	468	5.3	(3-8)	470	5.5	(4-8)	
Slovenia	31	35.5	(19-55)	60	38.3	(26-52)	36	41.7	(26-59)	39	17.9	(8-34)	
Czech Republic	60	5.0	(1-14)	57	0.0	(0-6)	55	5.5	(1-15)	91	18.7	(11-28)	1
Portugal	302	45.0	(39-51)	206	37.9	(31-45)	166	24.1	(18-31)	123	22.0	(15-30)	\downarrow
EU/EEA (population-weighted mean)	4887	27.7	(26-29)	5390	28.3	(27-30)	5863	28.2	(27-29)	6 2 6 1	28.8	(28-30)	
Slovakia	142	23.2	(17-31)	109	24.8	(17-34)	119	25.2	(18-34)	139	36.0	(28-45)	1
Estonia	1	**	(**)	5	**	(**)	9	**	(**)	11	36.4	(11-69)	N/A
Hungary	462	51.7	(47-56)	397	52.4	(47-57)	352	48.9	(44-54)	341	41.3	(36-47)	\downarrow
Spain	94	41.5	(31-52)	106	44.3	(35-54)	92	48.9	(38-60)	81	44.4	(33-56)	
Latvia	60	46.7	(34-60)	67	67.2	(55-78)	32	75.0	(57-89)	44	56.8	(41-72)	
Poland	240	54.6	(48-61)	383	59.3	(54-64)	333	59.5	(54-65)	251	62.9	(57-69)	
Bulgaria	112	66.1	(57-75)	76	72.4	(61-82)	92	78.3	(68-86)	110	66.4	(57-75)	
Italy	650	72.6	(69-76)	692	74.7	(71-78)	763	72.6	(69-76)	1351	75.7	(73-78)	
Romania	186	76.9	(70-83)	152	82.9	(76-89)	182	81.3	(75-87)	210	77.6	(71-83)	
Cyprus	59	72.9	(60-84)	28	57.1	(37-76)	50	76.0	(62-87)	55	78.2	(65-88)	
Greece	943	82.2	(80-85)	838	84.0	(81-86)	1059	84.3	(82-86)	995	81.3	(79-84)	
Lithuania	73	76.7	(65-86)	87	75.9	(65-84)	85	77.6	(67-86)	87	85.1	(76-92)	
Croatia	193	87.0	(81-91)	175	81.1	(75-87)	203	83.7	(78-89)	153	90.8	(85-95)	
Malta	15	6.7	(0-32)	7	**	(**)	9	**	(**)	8	**	(**)	N/A
Iceland	6	**	(**)	3	**	(**)	6	**	(**)	2	**	(**)	N/A
Luxembourg	7	**	(**)	8	**	(**)	8	**	(**)	6	**	(**)	N/A

–: No data * \bigstar and \clubsuit indicate significant increasing and decreasing trends, respectively.

indicates a significant trend in the overall data; when only data from laboratories consistently reporting all four years are included, no trend could be detected. NA: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period.

** Less than 10 isolates reported, no percentage calculated

3.5 Streptococcus pneumoniae

Streptococcus pneumoniae is a common cause of infection, especially among young children, elderly people and patients with compromised immune functions. The clinical spectrum ranges from upper airway and middle ear infection to pneumonia, bloodstream infection and meningitis.

The mechanism of penicillin resistance in *S. pneu-moniae* consists of alterations in penicillin-binding proteins (PBPs), which may result in reduced affinity to benzylpenicillin and a variable spectrum of other beta-lactams. Alterations in PBPs are due to homologous DNA recombination with PBP gene sequences originating from commensal streptococci. Acquisition of mosaic PBP results in different degrees of resistance. In the absence of meningitis, infections with *S. pneumoniae* susceptible with increased exposure to benzylpenicillin are often successfully treated with higher doses of the agent.

Macrolide resistance is mainly due to acquisition of either an erythromycin ribosomal methylation gene or a macrolide efflux system gene.

Antimicrobial resistance

For this report, the term penicillin non-wild-type refers to *S. pneumoniae* isolates reported by the local laboratories as 'susceptible, increased exposure' (I) or resistant (R) to penicillin, assuming MICs to benzylpenicillin above those of wild-type isolates (i.e. >0.06 mg/L) [12]. The analysis was based on the qualitative susceptibility categories S, I and R, as quantitative susceptibility information was missing for a large proportion of the data. Laboratories not using EUCAST clinical breakpoints may define the cut-off values for the susceptibility categories differently.

In 2018, the national percentages for penicillin non-wildtype isolates ranged from 0.1% to 40.0% (Table 3.26), and for macrolide-resistant isolates between 2.5% and 32.3% (Table 3.27, Figure 3.24). Combined penicillin non-wild-type and macrolide resistance was less common, with a majority of the countries reporting this phenotype for less than 10% of the tested isolates (Table 3.28).

Discussion and conclusion

Based on EARS-Net data, the resistance situation in *S. pneumoniae* appears stable in the EU/EEA, with few countries reporting increasing or decreasing trends during the period 2015–2018. As in previous years, large inter-country variations are noted.

Differences in the clinical breakpoints used for determining penicillin susceptibility in *S. pneumoniae* with regard to the guidelines used and the sites of infection introduce bias when comparing national data reported to EARS-Net. Limited information on the guidelines used for interpretation and incomplete quantitative susceptibility data hamper any assessment of inter-country differences. In parallel with EARS-Net, the invasive pneumococcal disease (IPD) enhanced surveillance initiative, which is also coordinated by ECDC, collects additional data on IPD cases from reference laboratories throughout the EU/EEA [39]. Data from this surveillance initiative show that the resistance prevalence increased slightly for penicillin and erythromycin in all countries that consistently reported antimicrobial susceptibility data between 2014 and 2016 [40]. It is, however, difficult to compare data from the two surveillance systems due to differences in data sources and completeness of reporting. The two surveillance systems are currently being harmonised by ECDC to make best use of available data.

Most EU/EEA countries have implemented routine immunisation for children with multivalent pneumococcal conjugated vaccines (PCVs). In some countries, adult high-risk groups, such as the elderly and immunocompromised individuals, are also targeted with the polysaccharide vaccine or with PCVs [41]. Increased immunisation and better serotype coverage of the available PCVs will probably have an impact on the epidemiology of *S. pneumoniae* in the EU/EEA, both in terms of changes in the age-specific incidence and potential serotype replacement.

Figure 3.24. *Streptococcus pneumoniae*. Percentage (%) of invasive isolates resistant to macrolides, EU/EEA countries, 2018

		2015			2016			2017			2018		Trend
Country	N	%NWT	(95%Cl)	N	%NWT	(95%Cl)	N	%NWT	(95%Cl)	N	%NWT	(95%CI)	2015- 2018*
Belgium	1361	0.6	(0-1)	1327	0.4	(0-1)	1472	0.2	(0-1)	1 526	0.1	(0-0)	Ŷ
Estonia	72	2.8	(0-10)	112	3.6	(1-9)	141	2.1	(0-6)	142	2.8	(1-7)	
Netherlands	1163	1.8	(1-3)	1 3 9 1	2.2	(2-3)	1401	3.4	(3-5)	1 498	3.2	(2-4)	1
Czech Republic	284	3.2	(1-6)	266	4.5	(2-8)	366	4.9	(3-8)	378	5.0	(3-8)	
Norway	429	5.4	(3-8)	500	4.4	(3-7)	480	4.8	(3-7)	500	5.0	(3-7)	
Sweden	420	9.8	(7-13)	882	7.1	(6-9)	750	6.1	(5-8)	676	5.2	(4-7)	N/A
Germany	761	6.2	(5-8)	1 359	4.6	(4-6)	1989	4.5	(4-5)	1833	5.3	(4-6)	
Denmark	747	4.7	(3-6)	707	6.1	(4-8)	727	3.9	(3-6)	760	5.5	(4-7)	
United Kingdom	1095	7.8	(6-10)	3201	4.9	(4-6)	3963	5.3	(5-6)	4162	5.6	(5-6)	
Austria	444	5.6	(4-8)	440	3.4	(2-6)	463	6.0	(4-9)	523	6.3	(4-9)	
Cyprus	7	**	(**)	10	40.0	(12-74)	11	45.5	(17-77)	16	6.3	(0-30)	N/A
Italy	389	12.3	(9-16)	399	6.5	(4-9)	522	10.5	(8-13)	928	9.2	(7-11)	
Bulgaria	35	22.9	(10-40)	33	27.3	(13-46)	29	27.6	(13-47)	42	9.5	(3-23)	
Slovenia	323	9.0	(6-13)	269	6.7	(4-10)	319	10.0	(7-14)	271	9.6	(6-14)	
Iceland	25	24.0	(9-45)	19	10.5	(1-33)	27	18.5	(6-38)	31	9.7	(2-26)	N/A
Hungary	181	7.2	(4-12)	174	15.5	(10-22)	204	6.9	(4-11)	207	10.1	(6-15)	
Latvia	59	8.5	(3-19)	61	11.5	(5-22)	51	17.6	(8-31)	69	10.1	(4-20)	
Luxembourg	27	3.7	(0-19)	51	13.7	(6-26)	45	6.7	(1-18)	45	11.1	(4-24)	
Finland	677	12.7	(10-15)	706	10.3	(8-13)	698	10.5	(8-13)	600	11.5	(9-14)	
Slovakia	27	22.2	(9-42)	13	7.7	(0-36)	39	25.6	(13-42)	46	13.0	(5-26)	N/A
Portugal	797	11.2	(9-14)	884	12.2	(10-15)	997	12.8	(11-15)	986	13.4	(11-16)	
Poland	217	24.4	(19-31)	337	19.3	(15-24)	290	16.6	(12-21)	343	15.7	(12-20)	↓ #
Croatia	126	19.0	(13-27)	155	21.9	(16-29)	129	22.5	(16-31)	144	18.1	(12-25)	
Spain	665	23.5	(20-27)	643	25.0	(22-29)	735	22.3	(19-25)	981	18.5	(16-21)	\downarrow
Lithuania	87	16.1	(9-26)	99	16.2	(10-25)	109	15.6	(9-24)	93	19.4	(12-29)	
Ireland	303	17.5	(13-22)	363	16.5	(13-21)	412	15.8	(12-20)	455	20.7	(17-25)	
Malta	20	35.0	(15-59)	10	10.0	(0-45)	19	31.6	(13-57)	37	24.3	(12-41)	N/A
France	1068	22.9	(20-26)	1 0 4 6	25.3	(23-28)	614	25.9	(22-30)	1 0 4 5	29.1	(26-32)	1
Romania	41	39.0	(24-55)	56	41.1	(28-55)	79	29.1	(19-40)	90	40.0	(30-51)	

Table 3.26. Streptococcus pneumoniae. Total number of tested isolates (N) and percentage (%) penicillin non-wild-type (NWT)^a, including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

-: No data

Greece

* \uparrow and \downarrow indicate significant increasing and decreasing trends, respectively.

(-)

indicates a significant trend in the overall data; when only data from laboratories consistently reporting all four years are included, no trend could be detected. N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period.

(-)

(-)

(-)

N/A

** Less than 10 isolates reported, no percentage calculated.

^a For this report, the term penicillin non-wild-type refers to *S. pneumoniae* isolates reported by the local laboratories as 'susceptible, increased exposure' (I) or resistant (R) to penicillin, assuming MICs to benzylpenicillin above those of the wild-type isolates (i.e. >0.06 mg/L). The analysis is based on the qualitative susceptibility categories S, I and R as quantitative susceptibility information was missing for a large proportion of the data. It should be understood that laboratories not using EUCAST clinical breakpoints might define the cut-off values for the susceptibility categories differently.

Country	2015			2016			2017					Trend	
Country	N	%R	(95%CI)	2015- 2018*									
Denmark	747	5.2	(4-7)	707	4.8	(3-7)	727	3.6	(2-5)	760	2.5	(2-4)	Ť
Netherlands	1168	3.6	(3-5)	1389	2.8	(2-4)	1406	5.3	(4-7)	1519	3.7	(3-5)	
Sweden	850	6.6	(5-8)	899	5.3	(4-7)	750	4.7	(3-6)	674	4.5	(3-6)	N/A
United Kingdom	1077	6.9	(5-9)	3423	5.9	(5-7)	4273	5.6	(5-6)	4450	5.6	(5-6)	
Cyprus	7	**	(**)	10	60.0	(26-88)	19	26.3	(9-51)	14	7.1	(0-34)	N/A
Germany	758	8.2	(6-10)	1386	8.0	(7-10)	2029	6.9	(6-8)	1849	7.2	(6-8)	
Estonia	54	7.4	(2-18)	100	7.0	(3-14)	127	3.9	(1-9)	136	7.4	(4-13)	
Norway	403	4.0	(2-6)	473	5.3	(3-8)	439	5.5	(4-8)	460	7.6	(5-10)	1
Latvia	58	5.2	(1-14)	52	5.8	(1-16)	28	3.6	(0-18)	66	9.1	(3-19)	
Czech Republic	284	6.7	(4-10)	263	7.2	(4-11)	366	9.0	(6-12)	378	10.1	(7-14)	
Slovenia	323	18.6	(14-23)	269	13.4	(10-18)	216	15.7	(11-21)	271	10.3	(7-15)	Ť
Luxembourg	29	0.0	(0-12)	51	15.7	(7-29)	49	8.2	(2-20)	45	11.1	(4-24)	
Austria	439	8.4	(6-11)	455	8.6	(6-12)	507	10.8	(8-14)	562	11.6	(9-15)	
Finland	765	14.0	(12-17)	791	11.4	(9-14)	808	15.0	(13-18)	653	12.1	(10-15)	
Iceland	25	12.0	(3-31)	19	0.0	(0-18)	27	18.5	(6-38)	31	12.9	(4-30)	N/A
Ireland	296	13.9	(10-18)	354	13.3	(10-17)	396	12.9	(10-17)	419	13.6	(10-17)	
Hungary	170	10.6	(6-16)	166	13.3	(8-19)	187	11.8	(8-17)	190	14.7	(10-21)	
Belgium	1361	18.6	(17-21)	1327	15.7	(14-18)	1472	15.1	(13-17)	1526	15.2	(13-17)	\downarrow
Portugal	822	16.3	(14-19)	912	14.4	(12-17)	1024	14.8	(13-17)	985	15.5	(13-18)	
Bulgaria	33	18.2	(7-35)	32	21.9	(9-40)	29	27.6	(13-47)	42	16.7	(7-31)	
Spain	631	21.2	(18-25)	630	24.9	(22-28)	717	21.8	(19-25)	1007	18.0	(16-20)	↓ #
Italy	428	23.4	(19-28)	464	22.4	(19-26)	599	22.7	(19-26)	1095	20.3	(18-23)	
Lithuania	72	12.5	(6-22)	94	18.1	(11-27)	107	15.9	(10-24)	92	20.7	(13-30)	
France	1068	24.4	(22-27)	1046	22.9	(20-26)	614	23.1	(20-27)	1045	23.9	(21-27)	
Malta	20	40.0	(19-64)	9	**	(**)	19	36.8	(16-62)	37	24.3	(12-41)	N/A
Slovakia	34	32.4	(17-51)	12	8.3	(0-38)	31	35.5	(19-55)	45	24.4	(13-40)	N/A
Poland	206	30.6	(24-37)	277	30.3	(25-36)	253	24.5	(19-30)	309	24.9	(20-30)	
Croatia	126	19	(13-27)	154	34	(26-42)	127	36	(28-45)	143	32	(25-40)	1
Romania	20	30	(12-54)	59	37.3	(25-51)	76	26.3	(17-38)	93	32.3	(23-43)	
Greece	-	-	(-)	-	-	(-)	-	-	(-)	-	-	(-)	N/A

Table 3.27. *Streptococcus pneumoniae*. Total number of tested isolates (N) and percentage resistant to macrolides (%R), including 95% confidence intervals (95% CI), by country, EU/EEA countries, 2015 to 2018

-: No data

* $\ensuremath{\uparrow}$ and $\ensuremath{\downarrow}$ indicate significant increasing and decreasing trends, respectively.

Country -	2015			2016			2017			2018			Trend
Country	N	%	(95%CI)	N	%	(95%CI)	N	%	(95%Cl)	N	%	(95%CI)	2015- 2018*
Belgium	1361	0.4	(0-1)	1327	0.3	(0-1)	1472	0.1	(0-0)	1526	0.1	(0-0)	↓ #
Netherlands	1030	0.9	(0-2)	1263	0.4	(0-1)	1297	1.1	(1-2)	1374	0.9	(0-2)	
Denmark	747	2.4	(1-4)	707	2.3	(1-4)	727	1.8	(1-3)	760	1.3	(1-2)	
United Kingdom	1060	2.6	(2-4)	3136	2.6	(2-3)	3885	1.9	(2-2)	4052	2.0	(2-2)	
Estonia	27	3.7	(0-19)	100	1.0	(0-5)	127	1.6	(0-6)	136	2.2	(0-6)	
Bulgaria	32	12.5	(4-29)	32	9.4	(2-25)	29	17.2	(6-36)	42	2.4	(0-13)	
Germany	748	2.7	(2-4)	1342	2.2	(1-3)	1969	2.2	(2-3)	1805	2.5	(2-3)	
Czech Republic	284	1.8	(1-4)	263	1.1	(0-3)	366	3.0	(2-5)	378	2.6	(1-5)	
Sweden	409	5.6	(4-8)	877	4.0	(3-6)	745	3.0	(2-4)	674	2.7	(2-4)	N/A
Austria	433	2.5	(1-4)	438	1.4	(1-3)	457	3.3	(2-5)	519	3.3	(2-5)	
Norway	403	1.7	(1-4)	469	2.3	(1-4)	439	2.5	(1-4)	454	3.5	(2-6)	
Luxembourg	27	0.0	(0-13)	51	7.8	(2-19)	45	4.4	(1-15)	45	4.4	(1-15)	
Italy	347	5.5	(3-8)	361	4.4	(3-7)	474	5.3	(3-8)	879	4.7	(3-6)	
Slovenia	323	5.0	(3-8)	269	3.3	(2-6)	216	6.5	(4-11)	271	4.8	(3-8)	
Finland	654	6.7	(5-9)	687	6.1	(4-8)	671	6.7	(5-9)	591	5.8	(4-8)	
Latvia	53	1.9	(0-10)	51	3.9	(0-13)	28	3.6	(0-18)	66	6.1	(2-15)	
Cyprus	7	**	(**)	10	40	(12-74)	11	45.5	(17-77)	14	7.1	(0-34)	N/A
Hungary	170	1.8	(0-5)	166	7.8	(4-13)	187	6.4	(3-11)	190	7.9	(4-13)	1
Portugal	776	6.4	(5-8)	868	6.6	(5-8)	978	7.1	(6-9)	922	8.0	(6-10)	
Spain	624	11.7	(9-14)	612	13.7	(11-17)	701	12.4	(10-15)	957	9.6	(8-12)	
Iceland	25	8.0	(1-26)	19	0.0	(0-18)	27	14.8	(4-34)	31	9.7	(2-26)	N/A
Ireland	296	10.8	(8-15)	354	9.6	(7-13)	396	9.3	(7-13)	419	10.0	(7-13)	
Poland	195	19.5	(14-26)	271	16.6	(12-22)	241	14.1	(10-19)	285	10.9	(8-15)	\downarrow
Croatia	126	7.9	(4-14)	154	14.9	(10-22)	126	15.9	(10-23)	141	11.3	(7-18)	
Slovakia	27	22.2	(9-42)	12	0.0	(0-26)	30	23.3	(10-42)	44	11.4	(4-25)	N/A
Lithuania	72	11.1	(5-21)	94	12.8	(7-21)	107	11.2	(6-19)	92	13.0	(7-22)	
Malta	20	25.0	(9-49)	9	**	(**)	19	26.3	(9-51)	37	13.5	(5-29)	N/A
France	1068	17.4	(15-20)	1046	18.0	(16-20)	614	17.6	(15-21)	1045	20.4	(18-23)	
Romania	20	25.0	(9-49)	56	30.4	(19-44)	75	24.0	(15-35)	90	26.7	(18-37)	
Greece	-	-	(-)	-	-	(-)	-		(-)	-	-	(-)	N/A

Table 3.28. *Streptococcus pneumoniae*. Total number of tested isolates (N) and percentage (%) penicillin non-wild-type^a and resistant to macrolides, including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

-: No data

* ~~ and ~~ indicate significant increasing and decreasing trends, respectively.

indicates a significant trend in the overall data; when only data from laboratories consistently reporting all four years are included, no trend could be detected. N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period.

** Less than 10 isolates reported, no percentage calculated.

^a For this report, the term penicillin non-wild-type refers to S. pneumoniae isolates reported by the local laboratories as 'susceptible, increased exposure' (I) or resistant (R) to penicillin, assuming MICs to benzylpenicillin above those of the wild-type isolates (i.e. vo.o6 mg/L). The analysis is based on the qualitative susceptibility categories S, I and R as quantitative susceptibility information was missing for a large proportion of the data. It should be understood that laboratories not using EUCAST clinical breakpoints might define the cut-off values for the susceptibility categories differently.

3.6 Staphylococcus aureus

Staphylococcus aureus is a gram-positive bacterium that frequently colonises the skin and nostrils of healthy humans. However, *S. aureus* is also an opportunistic microorganism involved in infections of both community and healthcare origin. Besides being a common cause of skin, soft tissue and bone infections, it is one of the leading causes of bloodstream infections in Europe. *S. aureus* acquires resistance to meticillin and some other beta-lactam agents through expression of the exogenous mecA, or less frequently, the mecC gene. These genes code for a variant penicillin-binding protein PBP2' (PBP2a) with low affinity for beta-lactams and able to substitute for the function of the other penicillinbinding proteins, thus preventing the inhibition of cell wall synthesis by beta-lactams.

Antimicrobial resistance

The EU/EEA population-weighted mean percentage of meticillin-resistant *S. aureus* (MRSA) was 16.4% in 2018. This is a result of a significantly decreasing trend between 2015 and 2018 (Table 3.30).

In 2018, large differences in national MRSA percentages were noted, ranging from 0% to 43.0% (Figure 3.25). Close to a third of the countries reported significantly decreasing trends during the period 2015–2018, including countries with both low and high percentages of MRSA (Table 3.30).

Among MRSA, combined resistance to other antimicrobial groups was common. The most common resistance combination was MRSA and resistance to fluoroquinolones. Rifampicin resistance was less common (Table 3.29).

Discussion and conclusion

As noted in previous reports, MRSA percentages are stabilising or decreasing in a majority of EU/EEA countries, which is also reflected in the continuously decreasing EU/EEA population-weighted mean MRSA percentage. Many countries have developed and implemented national recommendations and guidance documents on preventing the spread of MRSA, focusing on both improved infection prevention and control and prudent antimicrobial use [29].

Despite this positive development, MRSA remains an important pathogen in Europe. S. aureus is one of the most common causes of serious bacterial infections, exhibiting a high burden in terms of morbidity and mortality [3]. Although the EU/EEA population-weighted MRSA percentage, as reported by EARS-Net, has been decreasing for many years now, ECDC's study on the health burden of AMR reported an increase in the MRSA incidence between 2007 and 2015. Further analysis of the age-group-specific incidence as part of the ECDC study found that this was mainly caused by an increase in incidence among infants and people aged 55 years or above [3]. These discrepancies indicate a need to further study the distribution of *S. aureus* in the EU/EEA to obtain a better overview of the current epidemiological situation.

In order to slow the spread of MRSA in Europe, comprehensive MRSA strategies targeting all healthcare sectors remain essential. The monitoring of MRSA in animals and food is currently voluntary and only performed in a limited number of countries. However this monitoring shows a constantly evolving situation, including the detection of livestock-associated MRSA (LA-MRSA), healthcare-associated MRSA and community-associated MRSA from companion animals and/or livestock [24]. Recently, LA-MRSA has gained increasing attention, as it poses a zoonotic risk, particularly for those working in close contact with livestock. An ECDC survey has documented the increasing detection and geographical dispersion of LA-MRSA in humans in the EU/EEA between 2007 and 2013 and highlights the public health and veterinary importance of LA-MRSA as a 'One Health' issue [42].

 Table 3.29. Staphylococcus aureus. Total number of invasive isolates tested (N)* and percentage resistance (%) per phenotype, EU/EEA countries, 2018

Resistance pattern	Number of isolates	Percentage (%) of total**
Fully susceptible	43 681	80.7
Single resistance (to indicated antimicrobial group)		
Total (any single resistance)	4 4 9 5	8.3
MRSA	1 353	2.5
Fluoroquinolones	2927	5.4
Rifampicin	215	0.4
Resistance to two antimicrobial groups		
Total (any two-group combinations)	5705	10.5
MRSA + fluoroquinolones	5643	10.4
Other resistance combinations	62	0.1
Resistance to three antimicrobial groups		
MRSA + fluoroquinolones + rifampicin	254	0.5

Only resistance combinations >1 % of the total are specified.

* Only isolates with complete susceptibility information for meticillin, fluoroquinolones, and rifamipicin were included in the analysis.

** Not adjusted for population differences in the reporting countries.

Figure 3.25. *Staphylococcus aureus*. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), by country, EU/EEA countries, 2018

Country -	2015			2016			2017			2018			Trend
country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%Cl)	N	%R	(95%Cl)	2015
Iceland	88	0.0	(0-4)	76	1.3	(0-7)	69	1.4	(0-8)	82	0.0	(0-4)	
Norway	1453	1.2	(1-2)	1448	1.2	(1-2)	1462	1.0	(1-2)	1547	0.9	(0-2)	
Netherlands	2107	1.3	(1-2)	2699	1.2	(1-2)	2694	1.5	(1-2)	3 0 5 0	1.2	(1-2)	
Denmark	1876	1.6	(1-2)	1963	2.0	(1-3)	1996	2.5	(2-3)	2181	1.7	(1-2)	
Sweden	3124	0.8	(1-1)	3450	2.3	(2-3)	3787	1.2	(1-2)	3639	1.9	(2-2)	N/A
Finland	2070	1.9	(1-3)	1890	2.2	(2-3)	2439	2.0	(1-3)	2105	2.0	(1-3)	
Estonia	151	4.0	(1-8)	314	3.5	(2-6)	290	2.1	(1-4)	359	3.3	(2-6)	
Latvia	251	5.6	(3-9)	284	4.2	(2-7)	210	5.7	(3-10)	315	5.7	(3-9)	
Austria	2785	7.5	(7-9)	3053	7.1	(6-8)	3 158	5.9	(5-7)	3307	6.4	(6-7)	Ť
United Kingdom	2757	10.8	(10-12)	6717	6.7	(6-7)	8883	6.9	(6-7)	9045	7.3	(7-8)	1
Germany	5020	11.3	(10-12)	9866	10.2	(10-11)	13128	9.1	(9-10)	11 611	7.6	(7-8)	1
Luxembourg	135	8.9	(5-15)	187	10.2	(6-15)	200	9.5	(6-14)	181	7.7	(4-13)	
Lithuania	376	8.5	(6-12)	503	11.3	(9-14)	514	8.8	(6-12)	691	8.4	(6-11)	
Belgium	913	12.3	(10-15)	1364	12.2	(10-14)	1511	8.5	(7-10)	1735	9.1	(8-11)	Ť
Slovenia	513	9.2	(7-12)	534	11.0	(9-14)	576	9.0	(7-12)	606	11.7	(9-15)	
France	5535	15.7	(15-17)	5578	13.8	(13-15)	6472	12.9	(12-14)	6903	12.1	(11-13)	Ť
Ireland	1057	18.1	(16-21)	1143	14.3	(12-17)	1140	16.3	(14-19)	1188	12.4	(11-14)	Ť
Czech Republic	1806	13.7	(12-15)	1887	13.9	(12-16)	1944	13.2	(12-15)	2243	13.6	(12-15)	
Poland	958	15.8	(14-18)	1772	16.4	(15-18)	1805	15.2	(14-17)	1959	15.9	(14-18)	
EU/EEA (population-weighted mean)	45509	19.0	(19-19)	57387	17.7	(17-18)	65928	16.8	(17-17)	72059	16.4	(16-17)	1
Bulgaria	222	13.1	(9-18)	231	14.3	(10-19)	227	13.7	(9-19)	313	17.6	(14-22)	
Hungary	1 5 17	24.7	(23-27)	1668	25.2	(23-27)	1566	23.6	(22-26)	1721	23.1	(21-25)	
Spain	1968	25.3	(23-27)	1944	25.8	(24-28)	1856	25.1	(23-27)	2444	24.2	(23-26)	
Croatia	486	24.5	(21-29)	458	25.3	(21-30)	520	28.5	(25-33)	458	26.4	(22-31)	
Slovakia	583	28.1	(25-32)	571	27.1	(24-31)	613	29.2	(26-33)	610	26.6	(23-30)	
Italy	3000	34.1	(32-36)	2981	33.6	(32-35)	3591	33.9	(32-35)	8263	34.0	(33-35)	
Malta	87	49.4	(39-60)	97	37.1	(28-48)	95	42.1	(32-53)	88	36.4	(26-47)	
Greece	612	39.4	(35-43)	639	38.8	(35-43)	822	38.4	(35-42)	888	36.4	(33-40)	
Portugal	3 619	46.8	(45-48)	3 4 5 4	43.6	(42-45)	3728	39.2	(38-41)	3810	38.1	(36-40)	1
Cyprus	143	43.4	(35-52)	139	38.8	(31-47)	125	31.2	(23-40)	117	40.2	(31-50)	
Romania	297	57.2	(51-63)	477	50.5	(46-55)	507	44.4	(40-49)	600	43.0	(39-47)	1

Table 3.30. *Staphylococcus aureus*. Total number of invasive isolates tested (N) and percentage with resistance to meticillin (MRSA) including 95 % confidence intervals (95 % CI), EU/EEA countries, 2015 to 2018

* $\ensuremath{\uparrow}$ and $\ensuremath{\downarrow}$ indicate significant increasing and decreasing trends, respectively.

3.7 Enterococci

Enterococci belong to the normal bacterial microbiota of the gastrointestinal tract of humans. They are regarded as commensals but can cause invasive diseases when the commensal relationship with the host is disrupted. Enterococci can cause a variety of infections, including urinary tract infections, bloodstream infections and endocarditis, and are associated with peritonitis and intra-abdominal abscesses. The vast majority of clinical enterococcal infections in humans are caused by Enterococcus faecalis and *E. faecium*.

Enterococci are intrinsically resistant to a broad range of antimicrobial agents including cephalosporins, sulphonamides and low concentrations of aminoglycosides. By nature, enterococci also have low susceptibility to many beta-lactam agents as a consequence of their low-affinity penicillin-binding proteins. However, there is commonly synergy between aminoglycosides and penicillins or glycopeptides against enterococci without acquired high-level glycopeptide resistance. Some enterococci have acquired genes conferring high-level resistance to aminoglycosides, causing loss of any synergistic effect between beta-lactams and aminoglycosides.

Glycopeptide resistance of clinical relevance is mostly mediated through two phenotypes: VanA, with highlevel resistance to vancomycin and a variable level of resistance to teicoplanin; and VanB, with a variable level of resistance, in most cases to vancomycin only.

Antimicrobial resistance

Enterococcus faecalis: High-level gentamicin resistance

In 2018, the EU/EEA population-weighted mean percentage of high-level gentamicin resistance in *E. faecalis* was 27.1%, with national percentages ranging from 6.7% to 41.6% (Figure 3.26). The EU/EEA trend decreased significantly between 2015 and 2018, with similar significantly decreasing national trends reported from almost one quarter of the countries (Table 3.31).

Enterococcus faecalis: Vancomycin resistance

Vancomycin resistance in *E. faecalis* remained low in most countries. For more information, please refer to the online ECDC Surveillance Atlas of Infectious Diseases [27].

Enterococcus faecium: Vancomycin resistance

In 2018, the EU/EEA population-weighted mean percentage of vancomycin resistance in *E. faecium* was 17.3%, which represents a significant increase from 2015 when the percentage was 10.5%. National percentages ranged from 0.0% to 59.1% (Table 3.32). Only 12 of the 30 reporting countries reported resistance percentages below 5% (Figure 3.27). Several of the countries reporting comparatively high percentages of resistance to vancomycin also reported significantly increasing trends for the last four years (Table 3.32). For several countries, the increase during the four-year period was considerable.

Enterococcus faecium: High-level gentamicin resistance

With few exceptions, national percentages of high-level aminoglycoside resistance in *E. faecium* were higher than for E. *faecalis*. For more information, please refer to ECDC's Surveillance Atlas of Infectious Diseases [27].

Discussion and conclusion

The rapid and continuous increase in the percentage of vancomycin resistance in E. faecium in the EU/EEA is a cause for concern. ECDC's study on the health burden of AMR estimated that the number of infections and the deaths attributable to vancomycin-resistant enterococci (VRE) almost doubled between 2007 and 2015 [3], and the substantial increase in resistance percentages reported since 2015 contributes to a further increase in the health burden of VRE infections. The significantly increasing trends, observed at EU/EEA level and in many of the individual countries, highlight the urgent need for close monitoring to better understand the epidemiology, clonal diversity and risk factors associated with infection. Contrary to many other bacterium-antimicrobial group combinations under surveillance by EARS-Net, no distinct geographical pattern could be seen for vancomycin-resistant E. faecium, as high resistance levels were reported from countries in both southern, eastern and northern Europe.

Enterococci have intrinsic resistance to several antimicrobial classes, and any additional acquired resistance severely limits the number of treatment options. WHO has listed vancomycin-resistant *E. faecium* as a pathogen with high priority in its global priority list of antibiotic-resistant bacteria, emphasising the paucity of available and effective treatment options [34]. High levels of antimicrobial-resistant enterococci remain a major infection control challenge and an important cause of healthcare-associated infections in Europe. In addition to the fact that infections caused by resistant strains are difficult to treat, enterococci are easily disseminated in healthcare settings.

Figure 3.26. *Enterococcus faecalis*. Percentage (%) of invasive isolates with high-level resistance to gentamicin, by country, EU/EEA countries, 2018

Figure 3.27. *Enterococcus faecium*. Percentage (%) of invasive isolates with resistance to vancomycin, by country, EU/EEA countries, 2018

Country	2015			2016			2017			2018			Trend
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	2015-2018*
Luxembourg	56	14.3	(6-26)	48	12.5	(5-25)	82	22.0	(14-32)	45	6.7	(1-18)	
France	1 0 9 7	12.2	(10-14)	1057	15.0	(13-17)	795	12.7	(10-15)	1568	9.8	(8-11)	↓ #
Greece	460	13.3	(10-17)	540	15.9	(13-19)	621	12.2	(10-15)	668	12.0	(10-15)	
Belgium	249	13.3	(9-18)	328	19.8	(16-25)	304	16.4	(12-21)	390	12.3	(9-16)	
Denmark	63	25.4	(15-38)	56	19.6	(10-32)	56	7.1	(2-17)	171	12.3	(8-18)	1
Cyprus	58	8.6	(3-19)	39	20.5	(9-36)	70	8.6	(3-18)	87	12.6	(6-21)	
Sweden	579	12.6	(10-16)	722	13.4	(11-16)	945	13.3	(11-16)	627	12.8	(10-16)	N/A
Norway	163	9.8	(6-15)	221	15.8	(11-21)	216	14.4	(10-20)	216	13.4	(9-19)	
Iceland	21	14.3	(3-36)	24	16.7	(5-37)	33	18.2	(7-35)	30	16.7	(6-35)	
Slovenia	133	32.3	(24-41)	152	43.4	(35-52)	167	33.5	(26-41)	161	20.5	(15-28)	$\mathbf{\downarrow}$
Malta	29	27.6	(13-47)	33	39.4	(23-58)	29	34.5	(18-54)	31	22.6	(10-41)	
Germany	1 2 9 5	30.7	(28-33)	2341	25.2	(23-27)	2930	25.3	(24-27)	2 2 3 2	22.8	(21-25)	1
Netherlands	343	23.0	(19-28)	451	24.4	(20-29)	537	24.4	(21-28)	543	23.2	(20-27)	
Ireland	261	28.0	(23-34)	265	29.4	(24-35)	302	30.8	(26-36)	292	23.6	(19-29)	
Estonia	26	26.9	(12-48)	56	32.1	(20-46)	71	19.7	(11-31)	87	25.3	(17-36)	
Portugal	872	33.3	(30-36)	851	33.8	(31-37)	931	25.8	(23-29)	778	26.6	(24-30)	1
EU/EEA (population-weighted mean)	10711	31.9	(31-33)	12 698	31.8	(31-33)	13759	29.7	(29-31)	15088	27.1	(26-28)	Ŷ
Lithuania	63	44.4	(32-58)	45	35.6	(22-51)	60	36.7	(25-50)	65	27.7	(17-40)	
Austria	501	33.7	(30-38)	447	33.3	(29-38)	474	33.1	(29-38)	417	28.3	(24-33)	
Latvia	58	36.2	(24-50)	87	46.0	(35-57)	72	45.8	(34-58)	86	32.6	(23-44)	
Croatia	203	35.5	(29-42)	179	33.0	(26-40)	171	33.3	(26-41)	143	33.6	(26-42)	
Czech Republic	544	38.8	(35-43)	515	37.1	(33-41)	526	34.0	(30-38)	594	33.7	(30-38)	Ŷ
Spain	936	40.0	(37-43)	950	37.5	(34-41)	873	36.9	(34-40)	1002	34.8	(32-38)	↓ #
Romania	0		()	87	56.3	(45-67)	89	44.9	(34-56)	168	37.5	(30-45)	N/A
Hungary	730	45.5	(42-49)	786	42.2	(39-46)	769	41.5	(38-45)	750	38.0	(35-42)	Ŷ
Bulgaria	100	42.0	(32-52)	98	46.9	(37-57)	133	43.6	(35-52)	150	39.3	(31-48)	
Italy	1249	47.8	(45-51)	1 4 4 1	45.3	(43-48)	1 630	45.9	(43-48)	2927	39.9	(38-42)	\downarrow
Slovakia	234	49.1	(43-56)	213	45.1	(38-52)	213	25.8	(20-32)	215	40.0	(33-47)	Ŷ
Poland	388	46.4	(41-51)	666	43.1	(39-47)	660	41.2	(37-45)	645	41.6	(38-45)	
Finland	-	-	(-)	-	-	(-)	-	-	(-)	-	-	(-)	N/A
United Kingdom	-	-	(-)	-	-	(-)	-	-	(-)	-	-	(-)	N/A

 Table 3.31. Enterococcus faecalis. Total number of invasive isolates tested (N) and percentage with high-level resistance to gentamicin including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

–: No data * \bigstar and \clubsuit indicate significant increasing and decreasing trends, respectively.

N/A: Not applicable as data were not reported for all years, a significant change in data source occurred during the period or number of isolates was below 20 in any year during the period.

Country	2015			2016			2017				Trend		
Country	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	N	%R	(95%CI)	2015- 2018*
Luxembourg	23	0.0	(0-15)	31	0.0	(0-11)	34	0.0	(0-10)	28	0.0	(0-12)	
Slovenia	124	4.8	(2-10)	111	0.0	(0-3)	149	0.7	(0-4)	134	0.0	(0-3)	Ť
Iceland	20	0.0	(0-17)	16	0.0	(0-21)	17	0.0	(0-20)	16	0.0	(0-21)	N/A
France	849	0.8	(0-2)	808	0.6	(0-1)	986	0.8	(0-2)	987	0.6	(0-1)	
Netherlands	572	1.4	(1-3)	685	0.9	(0-2)	807	1.4	(1-2)	829	1.1	(0-2)	
Sweden	408	0.0	(0-1)	546	0.4	(0-1)	530	0.0	(0-1)	428	1.4	(1-3)	N/A
Finland	298	0.3	(0-2)	294	0.0	(0-1)	301	0.7	(0-2)	289	1.7	(1-4)	1
Belgium	163	0.6	(0-3)	289	1.7	(1-4)	417	5.5	(4-8)	436	1.8	(1-4)	
Austria	483	3.1	(2-5)	533	4.3	(3-6)	570	3.2	(2-5)	524	2.1	(1-4)	
Norway	185	0.0	(0-2)	213	1.9	(1-5)	202	4.5	(2-8)	171	2.3	(1-6)	1
Spain	571	2.5	(1-4)	628	2.1	(1-4)	570	1.8	(1-3)	764	2.5	(2-4)	
Portugal	459	20.3	(17-24)	411	7.5	(5-11)	461	7.2	(5-10)	436	4.4	(3-7)	Ť
Estonia	27	0.0	(0-13)	64	0.0	(0-6)	52	5.8	(1-16)	64	6.3	(2-15)	1
Bulgaria	41	14.6	(6-29)	44	18.2	(8-33)	84	19.0	(11-29)	91	9.9	(5-18)	
Denmark	690	3.2	(2-5)	679	7.5	(6-10)	785	7.0	(5-9)	779	12.5	(10-15)	1
EU/EEA (population-weighted mean)	9152	10.5	(10-11)	12330	12.3	(12-13)	14139	14.9	(14-16)	15739	17.3	(17-18)	1
Italy	756	11.2	(9-14)	941	13.4	(11-16)	1049	14.6	(13-17)	2273	18.9	(17-21)	1
Czech Republic	322	9.6	(7-13)	258	7.8	(5-12)	264	13.3	(9-18)	358	20.7	(17-25)	1
Germany	1 3 4 7	10.5	(9-12)	2043	11.9	(11-13)	2642	16.5	(15-18)	2382	23.8	(22-26)	1
United Kingdom	218	17.0	(12-23)	1803	17.0	(15-19)	2202	25.8	(24-28)	2615	24.7	(23-26)	1
Croatia	93	25.8	(17-36)	104	22.1	(15-31)	89	19.1	(12-29)	71	25.4	(16-37)	
Malta	6		()	12	8.3	(0-38)	13	0.0	(0-25)	15	26.7	(8-55)	N/A
Greece	315	19.7	(15-25)	358	27.9	(23-33)	412	30.8	(26-36)	527	28.1	(24-32)	1
Lithuania	52	17.3	(8-30)	61	21.3	(12-34)	80	36.3	(26-48)	99	31.3	(22-41)	↑ #
Slovakia	143	14.7	(9-22)	125	26.4	(19-35)	122	32.0	(24-41)	161	32.3	(25-40)	1
Latvia	34	17.6	(7-35)	56	28.6	(17-42)	39	25.6	(13-42)	48	35.4	(22-51)	
Poland	215	17.7	(13-23)	405	26.2	(22-31)	400	31.5	(27-36)	374	35.8	(31-41)	1
Hungary	240	16.7	(12-22)	272	22.4	(18-28)	315	28.3	(23-34)	301	39.5	(34-45)	1
Ireland	404	45.8	(41-51)	422	44.1	(39-49)	442	38.2	(34-43)	418	40.2	(35-45)	1
Romania	72	25.0	(16-37)	77	39.0	(28-51)	64	34.4	(23-47)	77	40.3	(29-52)	
Cyprus	28	28.6	(13-49)	41	46.3	(31-63)	41	43.9	(28-60)	44	59.1	(43-74)	1

Table 3.32. *Enterococcus faecium*. Total number of invasive isolates tested (N) and percentage with resistance to vancomycin, including 95% confidence intervals (95% CI), EU/EEA countries, 2015 to 2018

–: No data * \Uparrow and \clubsuit indicate significant increasing and decreasing trends, respectively.

References

- World Health Organization. Global Action Plan on Antimicrobial Resistance. Geneva: WHO; 2015. Available from: https://apps.who. int/iris/bitstream/handle/10665/193736/9789241509763_eng. pdf?sequence=1
- 2 European Commission. A European One Health Action Plan against Antimicrobial Resistance (AMR). Brussels: EC; 2017. Available from: https://ec.europa.eu/health/amr/sites/amr/files/ amr_action_plan_2017_en.pdf
- 3 Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, Simonsen GS, et al. Attributable deaths and disability-adjusted lifeyears caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019 Jan;19(1):56-66.
- 4 Organisation for Economic Co-operation and Development (OECD) and European Centre for Disease Prevention and Control (ECDC). Antimicrobial Resistance. Tackling the burden in the European Union. Briefing note for EU/EEA countries. Paris: OECDC 2019.
- 5 European Commission. Commission Decision No 1082/2013/EU of the European Parliament and of the Council of 22 October 2013 on serious cross-border threats to health. Available from: https://eurlex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013D1082
- 6 European Commission. Commission Implementing Decision (EU) 2018/945 of 22 June 2018 on the communicable diseases and related special health issues to be covered by epidemiological surveillance as well as relevant case definitions. Available from: https:// eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv%3AO J.L_.2018.170.01.0001.01.ENG
- 7 World Health Organization. Central Asian and European Surveillance of Antimicrobial Resistance. Annual Report 2018. Copenhagen: WHO Regional Office for Europe; 2018. Available from www.euro.who.int/ en/health-topics/disease-prevention/antimicrobial-resistance/ publications/2018/central-asian-and-eastern-european-surveillance-of-antimicrobial-resistance-annual-report-2018-2018
- 8 World Health Organization. European Strategic Action Plan on Antibiotic Resistance. Copenhagen: WHO Regional Office for Europe; 2011 EUR/RC61/14. Available from: www.euro.who.int/ en/about-us/governance/regional-committee-for-europe/pastsessions/sixty-first-session/documentation/working-documents/ wd14-european-strategic-action-plan-on-antibiotic-resistance
- 9 World Health Organization. Global antimicrobial resistance surveillance system (GLASS) report: early implementation 2017-2018. Geneva: WHO; 2018. Available from: https://apps.who.int/iris/bitstream/handle/10665/279656/9789241515061-eng.pdf?ua=1
- 10 European Centre for Disease Prevention and Control. TESSy, The European Surveillance System – Antimicrobial resistance (AMR) reporting protocol 2019 – European Antimicrobial Resistance Surveillance Network (EARS-Net) surveillance data for 2018. Stockholm: ECDC; 2019.
- European Committee on Antimicrobial Susceptibility Testing. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance – Version 2.0. EUCAST; 2017. Available from: www.eucast.org/file admin/src/media/PDFs/EUCAST_files/Resistance_mechanisms/ EUCAST_detection_of_resistance_mechanisms_170711.pdf
- 12 The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters, Version 9.0, 2019. http://www.eucast.org/clinical_breakpoints
- 13 European Centre for Disease Prevention and Control. External quality assessment (EQA) of performance of laboratories participating in the European Antimicrobial Resistance Surveillance Network (EARS-Net), 2018. Stockholm: ECDC; 2019. [Publication pending].
- 14 Eurostat [internet]. Brussels: Eurostat; 2019. Available from: http:// ec.europa.eu/eurostat
- 15 European Centre for Disease Prevention and Control. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals, 2016-2017. Stockholm: ECDC; 2019. [Publication pending].

- 16 European Centre for Disease Prevention and Control, European Food Safety Authority and European Medicines Agency. ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals – Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report. Available from: www.ecdc.europa.eu/publications-data/ecdcefsaema-second-joint-report-integrated-analysis consumption-antimicrobial
- 17 European Centre for Disease Prevention and Control. Antimicrobial consumption. In: ECDC. Annual epidemiological report for 2018. Stockholm: ECDC; 2019. [Publication pending].
- 18 European Centre for Disease Prevention and Control. Proposals for EU guidelines on the prudent use of antimicrobials in humans. Stockholm: ECDC; 2017. Available from: www.ecdc.europa.eu/sites/ portal/files/media/en/publications/Publications/EU-guidelinesprudent-use-antimicrobials.pdf
- 19 D'Atri F, Arthur J, Blix HS, Hicks LA, Plachouras D, Monnet DL, et al. Targets for the reduction of antibiotic use in humans in the Transatlantic Taskforce on Antimicrobial Resistance (TATFAR) partner countries. Euro Surveill. 2019 Jul;24(28).
- 20 Brolund A, Lagerqvist N, Byfors S, Struelens MJ, Monnet DL, Albiger B, et al. Worsening epidemiological situation of carbapenemaseproducing Enterobacteriaceae in Europe, assessment by national experts from 37 countries, July 2018. Euro Surveill. 2019 Feb;24(9).
- 21 European Centre for Disease Prevention and Control. Carbapenemresistant Enterobacteriaceae, second update – 26 September 2019. ECDC: Stockholm; 2019 Available from: www.ecdc.europa.eu/ sites/portal/files/documents/carbapenem-resistant-enterobacteriaceae-risk-assessment-rev-2.pdf
- 22 European Centre for Disease Prevention and Control. ECDC study protocol for genomic-based surveillance of carbapenem-resistant and/or colistin-resistant Enterobacteriaceae at the EU level. Version 2.0. Stockholm: ECDC; 2018. Available from: www.ecdc.europa.eu/ publications-data/ecdc-study-protocol-genomic-based-surveillance-carbapenem-resistant-andor
- 23 The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters, Version 6.0, 2016. Available from: www.eucast.org/ clinical_breakpoints
- 24 European Food Safety Authority (EFSA) and European Centre for Disease Prevention and Control (ECDC), 2019. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA Journal 2019;17(2):5598. Available from: https://doi.org/10.2903/j. efsa.2019.5598
- 25 European Centre for Disease Prevention and Control. Antimicrobial resistance surveillance in Europe 2013. Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). Stockholm: ECDC; 2014. Available from: www.ecdc.europa.eu/ sites/portal/files/media/en/publications/Publications/antimicrobial-resistance-surveillance-europe-2013.pdf
- 26 European Centre for Disease Prevention and Control. Rapid risk assessment: Carbapenemase-producing (OXA-48) *Klebsiella pneumoniae* ST392 in travellers previously hospitalised in Gran Canaria, Spain – 10 July 2018. Stockholm: ECDC; 2018. Available from: www. ecdc.europa.eu/publications-data/rapid-risk-assessmentcarbapenemase-producing-oxa-48-*klebsiella-pneumoniae*-st392
- 27 European Centre for Disease Prevention and Control. Surveillance Atlas of Infectious Diseases [Internet]. Stockholm: ECDC; 2018. Available from: http://atlas.ecdc.europa.eu
- 28 European Centre for Disease Prevention and Control. Rapid risk assessment: Regional outbreak of New Delhi metallo-beta-lactamase producing carbapenem-resistant Enterobacteriaceae, Italy, 2018–2019 - 4 June 2019. Stockholm: ECDC; 2019. Available from www.ecdc.europa.eu/sites/portal/files/documents/04-Jun-2019-RRA-Carbapenems%2C%20Enterobacteriaceae-Italy.pdf
- 29 European Centre for Disease Prevention and Control. Directory of online resources for prevention and control of antimicrobial resistance (AMR) and healthcare-associated infections (HAI) [Internet]. Stockholm: ECDC; 2018. Available from: www.ecdc.europa.eu/publications-data/directory-online-resources-prevention-and-controlantimicrobial-resistance-amr

- 30 Magiorakos AP, Burns K, Rodríguez Baño J, Borg M, Daikos G, Dumpis U, et al. Infection prevention and control measures and tools for the prevention of entry of carbapenem-resistant Enterobacteriaceae into healthcare settings: guidance from the European Centre for Disease Prevention and Control. Antimicrob Resist Infect Control. 2017 Nov;6:113.
- 31 European Centre for Disease Prevention and Control. Rapid risk assessment. Plasmid mediated colistin resistance in Enterobacteriaceae, 15 June 2016. Stockholm: ECDC; 2016. Available from: www.ecdc.europa.eu/publications-data/rapid-risk-assessment-plasmid-mediated-colistin-resistance-enterobacteriaceae-15
- 32 European Committee on Antimicrobial Susceptibility Testing. Recommendations for MIC determination of colistin (polymyxin E) as recommended by the joint CLSI-EUCAST Polymyxin Breakpoints Working Group. EUCAST; 2016. Available from: www.eucast. org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/Recommendations_for_MIC_determination_of_colistin_ March_2016.pdf
- 33 European Centre for Disease Prevention and Control. Rapid risk assessment. Emergence of resistance to ceftazidime-avibactam in carbapenem-resistant Enterobacteriaceae – 12 June 2018. Stockholm: ECDC; 2018. Available from: www.ecdc.europa.eu/en/ publications-data/rapid-risk-assessment-emergence-resistanceceftazidime-avibactam-carbapenem
- 34 World Health Organization. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Geneva: WHO; 2017. Available from: www.who.int/ medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_ NM_WHO.pdf
- 35 European Centre for Disease Prevention and Control. Healthcareassociated infections: surgical site infections. In: ECDC. Annual epidemiological report for 2016. Stockholm: ECDC; 2018.
- 36 European Centre for Disease Prevention and Control. Healthcareassociated infections acquired in intensive care units. In: ECDC. Annual epidemiological report for 2016. Stockholm: ECDC; 2018.
- 37 Jarlier V, Diaz Högberg L, Heuer OE, Campos J, Eckmanns T, Giske CG. et al. Strong correlation between the rates of intrinsically antibiotic-resistant species and the rates of acquired resistance in Gramnegative species causing bacteraemia, EU/EEA, 2016. Euro Surveill. 2019 Aug;24(33).
- 38 European Centre for Disease Prevention and Control. Rapid risk assessment. Carbapenem-resistant Acinetobacter baumannii in healthcare settings – 8 December 2016. Stockholm: ECDC; 2016. Available from: www.ecdc.europa.eu/publications-data/rapidriskassessment-carbapenem-resistant-acinetobacter-baumanniihealthcare
- 39 European Centre for Disease Prevention and Control. Invasive pneumococcal disease. In: Annual epidemiological report for 2017. Stockholm: ECDC; 2019.
- 40 European Centre for Disease Prevention and Control. Invasive pneumococcal disease. In: Annual epidemiological report for 2016. Stockholm: ECDC, 2018. Available from: www.ecdc.europa.eu/ publications-data/invasive-pneumococcal-disease-annual-epidemiological-report-2016
- 41 European Centre for Disease Prevention and Control. Vaccine scheduler [Internet]. Stockholm: ECDC; 2019. Available from: http://vaccine-schedule.ecdc.europa.eu
- 42 Kinross P, Petersen A, Skov R, Van Hauwermeiren E, Pantosti A, Laurent F, et al. Livestock-associated meticillin-resistant Staphylococcus aureus (MRSA) among human MRSA isolates, European Union/European Economic Area countries, 2013. Euro Surveill. 2017 Nov;22(44).
Annex

National institutions/organisations participating in EARS-Net

Austria

Federal Ministry of Health and Women's Affairs www.bmgf.gv.at Medical University Vienna www.meduniwien.ac.at Ordensklinikum Linz, Elisabethinen www.ordensklinikum.at

Belgium

Sciensano www.sciensano.be

Bulgaria

National Center of Infectious and Parasitic Diseases

Croatia

Reference Center for Antimicrobial Resistance Surveillance Ministry of Health Zagreb University Hospital for Infectious Diseases 'Dr. Fran Mihaljević'

Cyprus

Microbiology Department, Nicosia General Hospital

Czech Republic

National Institute of Public Health www.szu.cz National Reference Laboratory for Antibiotics

Denmark

Statens Serum Institut Danish Study Group for Antimicrobial Resistance Surveillance (DANRES) www.danmap.org

Estonia

Estonian Health Board East-Tallinn Central Hospital Tartu University Hospital

Finland

Finnish Institute for Health and Welfare www.thl.fi Department of Health Security Finnish Study Group for Antimicrobial Resistance (FiRe) www.finres.fi Finnish Hospital Infection Program (SIRO) thl filen/web/infectious/curveillance/

thl.fi/en/web/infectious-diseases/surveillance/ healthcare-associated-infections

France

Santé Publique France www.santepubliquefrance.fr

French National Observatory for the Epidemiology of Bacterial Resistance to Antimicrobials (ONERBA) through 3 participating networks: Azay-Résistance, Île-de-France, Réussir networks

French National Observatory for the Epidemiology of Bacterial Resistance to Antimicrobials (ONERBA) through 3 participating networks: Azay-Résistance, Île-de-France, Réussir networks www.onerba.org National Reference Centre for Pneumococci www.cnr-pneumo.com

Germany

Robert Koch Institute www.rki.de

Greece

Hellenic Pasteur Institute National School of Public Health National and Kapodistrian University of Athens, Medical School www.mednet.gr/whonet

Hungary

National Public Health Center www.oek.hu

Iceland

National University Hospital of Iceland Centre for Health Security and Infectious Disease Control

Ireland

Health Protection Surveillance Centre www.hpsc.ie

Italy

National Institute of Health www.iss.it

Latvia

Disease Prevention and Control Center of Latvia www.spkc.gov.lv

Lithuania

National Public Health Surveillance Laboratory www.nvspl.lt Institute of Hygiene www.hi.lt

Luxembourg

National Health Laboratory Microbiology Laboratory, Centre Hospitalier de Luxembourg

Malta

Malta Mater Dei Hospital, Msida

Netherlands

National Institute for Public Health and the Environment www.rivm.nl

Norway

University Hospital of North Norway Norwegian Institute of Public Health St. Olav University Hospital, Trondheim

Poland

National Medicines Institute, Department of Epidemiology and Clinical Microbiology National Reference Centre for Susceptibility Testing

Portugal

National Institute of Health Doutor Ricardo Jorge www.insarj.pt Ministry of Health Directorate-General of Health Directorate-General of Health

Romania

National Institute of Public Health

Slovakia

National Reference Centre for Antimicrobial Resistance Public Health Authority of the Slovak Republic Regional Public Health Authority Banska Bystrica

Slovenia

National Institute of Public Health www.nijz.si Medical faculty, University of Ljubljana National Laboratory of Health, Environment and Food

Spain

Health Institute Carlos Ill www.isciii.es National Centre for Microbiology

Sweden

The Public Health Agency of Sweden www.folkhalsomyndigheten.se

United Kingdom

Public Health England www.gov.uk/government/organisations/public-health-england Health Protection Scotland www.hps.scot.nhs.uk Public Health Agency Northern Ireland Public Health Wales www.publichealthwales.org

Country summaries

The country summaries offer information on the population coverage, hospital coverage and representativeness of data provided by the laboratories reporting data to EARS-Net. The summaries include both quantitative and qualitative measures related to the population under surveillance; the hospitals served by participating laboratories; laboratory practices and the use of blood cultures. For more information on how differences in patient sampling and laboratory practices might impact data validity, please refer to Chapter 2.

In addition, national resistance percentages from 2011 to 2018 are presented together with the EU/EEA population-weighted mean percentages for selected bacterium/ antimicrobial group combinations. Data for all bacterium/antimicrobial groups under regular surveillance by EARS-Net for the period 2000 to 2018 are available in the ECDC Surveillance Atlas of Infectious Diseases, available from https://atlas.ecdc.europa.eu.

Coverage and representativeness of population, hospitals and isolates included in EARS-Net

Data sources

As the data collected on national surveillance system characteristics was revised in 2019, data for 2018 comes from the European Surveillance System (TESSy), while the data for earlier years combines TESSy data with data collected through questionnaires distributed to the nominated National Focal Points for Antimicrobial Resistance.

Indicators

Estimated national population coverage is expressed as the estimated percentage of the national population under surveillance by the laboratories contributing data to EARS-Net. It should be considered as an indication of the national coverage, as the exact proportion of the population under surveillance is often difficult to assess. The country coverage was calculated as the mean of the population coverages for the following microorganisms: E. coli, *K. pneumoniae*, *P. aeruginosa* S. *aureus*, *E. faecalis* and *E. faecium*. Due to outliers in some countries, *S. pneumoniae* and *Acinetobacter* species were not included in the calculation.

Population sample representativeness is a qualitative indicator referring to the geographical representativeness of data. The categories are:

• High: all main geographical regions are covered and data are considered as representative of the national epidemiology;

- Medium: most geographical regions are covered and data are considered to be medium in terms of representativeness of the national epidemiology;
- Poor: only a few geographical areas are covered and data are poorly representative of the national epidemiology;
- Unknown: unknown or no data provided.

Hospital sample representativeness is a qualitative indicator referring to the representativeness of hospitals served by the EARS-Net participating laboratories, compared to the national distribution of hospital types (specialised, tertiary care, secondary care and primary care). The categories are:

- High: the hospital sample is representative of the acute care hospital distribution in the country;
- Medium: the hospital sample is partly representative of the acute care hospital distribution in the country;
- Poor: the hospital sample is poorly representative of the acute care hospital distribution in the country;
- Unknown: unknown or no data provided.

Blood culture sets/1000 patient-days refers to the number of blood culture sets per 1000 in-patient beddays in hospitals served by EARS-Net laboratories. The definition of an in-patient bed day might differ between countries, and influence the estimate.

Isolate sample representativeness is a qualitative indicator referring to representativeness of blood cultures reported by EARS-Net laboratories. The categories are:

- High: the isolate sample is representative of microorganisms causing invasive infections and of patient case-mix for the hospitals included;
- Medium: the isolate sample is partly representative of microorganisms causing invasive infections and of patient case-mix for the hospitals included;
- Poor: the isolate sample is poorly representative of microorganisms causing invasive infections and of patient case-mix for the hospitals included;
- Unknown: unknown or no data provided.

Laboratories contributing data to EARS-Net – participation in EARS-Net EQA exercise and use of EUCAST guidelines

Data source

Data were provided from the annual EARS-Net external quality assessment (EQA) exercise, coordinated by the ECDC contractor United Kingdom National External Quality Assessment Service (UK NEQAS). For more information on the EARS-Net EQA exercise, please refer to the separate EQA report [13].

Indicators

Percentage of laboratories participating in EARS-Net EQA represents the proportion of laboratories invited to participate in the EARS-Net EQA exercise that returned reports within the agreed time.

Percentage of laboratories using EUCAST or EUCAST harmonised guidelines refers to the proportion of laboratories reporting use of EUCAST or EUCAST-harmonised clinical guidelines among all laboratories returning reports on the EARS-Net EQA exercise. Guidelines from the British Society for Antimicrobial Chemotherapy (BSAC) and the Société Française de Microbiologie (SFM) were considered as harmonised with EUCAST since both have implemented EUCAST breakpoints in their national MIC breakpoint recommendations and adjusted the interpretation of their disk diffusion methods accordingly.

Annual number of reporting laboratories, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs)

Data source

EARS-Net data 2015 to 2018.

Indicators

Table 3 provides information on the number of laboratories, the number of isolates and the proportion of isolates from patients in intensive care units (ICUs), by year and by pathogen. The percentage of isolates from patients in ICUs is only calculated if information on hospital unit type is available for more than 50% of the isolates.

For some countries the total number of laboratories participating in EARS-Net could be higher than the number presented, as only laboratories reporting at least one isolate during each specific year are included.

Percentage (%) of invasive isolates with resistance to selected antimicrobial groups

Data source

EARS-Net data 2011 to 2018. For an explanation of the methodology used for the EU/EEA population-weighted mean, please refer to Chapter 2.

Indicators

Percentage of invasive isolates with resistance to selected antimicrobial groups: *Staphylococcus aureus* with resistance to meticillin (MRSA), *Escherichia coli* with resistance to third-generation cephalosporins, *Klebsiella pneumoniae* with resistance to carbapenems and *Enterococcus faecium* with resistance to vancomycin.

Austria

National institutions/organisations participating in EARS-Net

Federal Ministry of Health and Women's Affairs, www.bmgf.gv.at | Medical University Vienna, www.meduniwien.ac.at | Ordensklinikum Linz, Elisabethinen, www.ordensklinikum.at

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Austria, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	90	90	Unknown	Unknown
Population sample representativeness	High	High	Unknown	High
Hospital sample representativeness	Unknown	Unknown	Unknown	High
Blood culture sets/ 1000 patient-days	15.7	16.2	Unknown	24.2
Isolate sample representativeness	Unknown	Unknown	Unknown	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Austria, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	95	100	100	97
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Austria, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	39	4919	8	39	5285	8	39	5381	9	38	5686	9
K. pneumoniae	39	1065	13	38	1247	12	39	1152	13	38	1228	14
P. aeruginosa	39	680	17	39	697	17	39	725	16	38	737	16
Acinetobacter spp.	21	64	17	24	81	14	25	75	11	28	95	12
S. pneumoniae	38	450	20	39	457	21	39	513	18	38	567	18
S. aureus	39	2815	13	39	3057	13	39	3162	13	38	3 3 1 0	13
E. faecalis	39	685	15	38	677	15	38	769	18	38	837	17
E. faecium	38	485	31	38	535	28	38	573	31	35	524	28

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Austria and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Austria and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Austria and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Austria and EU/EEA population-weighted mean, 2011–2018

Belgium

National institutions/organisations participating in EARS-Net Sciensano, www.sciensano.be

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Belgium, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	24	29	30	
Laboratories collecting S. pneumoniae				86
Laboratories collecting others species				30
Population sample representativeness	High	High	High	
Laboratories collecting S. pneumoniae				High
Laboratories collecting others species				Medium
Hospital sample representativeness	High	High	High	High
Blood culture sets/1000 patient-days	Unknown	Unknown	Unknown	99.1*
Isolate sample representativeness	High	High	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Belgium, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	87	100	90	82
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	67	65	68	91

* Not including *S. pneumoniae* network

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Belgium, 2015–2018

	2015				2016		2017			2018		
Pathogen	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	25	2685	Unknown	31	3856	Unknown	32	4676	Unknown	32	4675	Unknown
K. pneumoniae	24	406	Unknown	28	669	Unknown	31	803	Unknown	31	956	Unknown
P. aeruginosa	25	263	Unknown	31	366	Unknown	31	474	Unknown	30	490	Unknown
Acinetobacter spp.	8	26	Unknown	18	79	Unknown	21	131	Unknown	26	134	Unknown
S. pneumoniae	91	1361	Unknown	97	1327	Unknown	91	1472	Unknown	88	1535	Unknown
S. aureus	25	994	Unknown	31	1368	Unknown	31	1531	Unknown	31	1750	Unknown
E. faecalis	25	386	Unknown	30	465	Unknown	31	551	Unknown	31	615	Unknown
E. faecium	23	164	Unknown	27	289	Unknown	30	418	Unknown	30	441	Unknown

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Belgium and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Belgium and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Belgium and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Belgium and EU/EEA population-weighted mean, 2011–2018

Bulgaria

National institutions/organisations participating in EARS-Net National Center of Infectious and Parasitic Diseases

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Bulgaria, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	30	30	30	46
Population sample representativeness	Medium	Medium	Medium	Medium
Hospital sample representativeness	Poor	Poor	Poor	Poor
Blood culture sets/ 1000 patient-days	8.2	7.2	8.3	8.5
Isolate sample representativeness	High	High	High	Medium

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Bulgaria, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	100	91	95	100
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	5	100	95	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Bulgaria, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	19	205	18	20	241	13	20	247	16	22	292	22
K. pneumoniae	16	96	19	17	161	29	18	169	33	21	193	47
P. aeruginosa	13	55	22	12	56	39	16	71	24	18	90	36
Acinetobacter spp.	18	133	59	15	106	48	15	92	62	19	110	66
S. pneumoniae	10	36	28	13	33	18	12	29	38	14	42	17
S. aureus	20	222	20	18	231	19	18	227	23	22	313	28
E. faecalis	19	113	35	17	114	25	17	133	26	20	150	34
E. faecium	13	43	43	12	45	53	17	84	39	20	91	49

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Bulgaria and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Bulgaria and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Bulgaria and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Bulgaria and EU/EEA population-weighted mean, 2011–2018

Croatia

National institutions/organisations participating in EARS-Net

Reference Center for Antimicrobial Resistance Surveillance | Ministry of Health Zagreb University Hospital for Infectious Diseases (Dr. Fran Mihaljević)

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Croatia, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	78	78	80	80
Population sample representativeness	High	High	High	High
Hospital sample representativeness	Unknown	Unknown	Unknown	High
Blood culture sets/ 1000 patient-days	Unknown	Unknown	Unknown	Unknown
Isolate sample representativeness	Unknown	Unknown	Unknown	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Croatia, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	91	94	94	100
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Croatia, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	isolates (N)	Isolates from ICUs (%)	Laboratories (N)	isolates (N)	Isolates from ICUs (%)
E. coli	18	1046	5	18	1045	6	19	1160	6	19	1216	5
K. pneumoniae	17	380	17	17	323	19	19	313	18	19	332	14
P. aeruginosa	17	257	11	16	260	23	17	238	17	17	200	16
Acinetobacter spp.	17	200	27	14	182	41	17	208	42	14	155	26
S. pneumoniae	15	126	7	17	155	22	16	130	13	17	146	9
S. aureus	16	488	12	18	458	12	18	520	16	18	458	11
E. faecalis	13	205	13	15	179	12	17	171	11	16	145	12
E. faecium	14	93	18	15	104	17	12	89	12	11	71	13

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Croatia and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Croatia and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Croatia and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Croatia and EU/EEA population-weighted mean, 2011–2018

Cyprus

National institutions/organisations participating in EARS-Net Microbiology Department, Nicosia General Hospital

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Cyprus, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	85	85	85	85
Population sample representativeness	High	High	High	High
Hospital sample representativeness	High	High	High	High
Blood culture sets/ 1000 patient-days	41.4	46.2	44.9	51.1
Isolate sample representativeness	High	High	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Cyprus, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	100	80	100	100
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	0	0	20	20

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Cyprus, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)
E. coli	5	123	12	5	149	16	5	156	14	4	151	19
K. pneumoniae	5	62	43	5	75	30	5	71	33	4	87	33
P. aeruginosa	5	43	47	5	64	40	4	53	33	4	55	39
Acinetobacter spp.	5	61	66	5	29	69	5	50	46	3	57	53
S. pneumoniae	4	7	14	4	10	11	4	19	37	3	16	8
S. aureus	5	145	22	5	141	21	5	129	26	4	117	17
E. faecalis	5	58	49	5	39	42	5	70	30	4	87	34
E. faecium	5	28	50	4	41	28	5	41	26	4	45	37

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Cyprus and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Cyprus and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Cyprus and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Cyprus and EU/EEA population-weighted mean, 2011–2018

Czech Republic

National institutions/organisations participating in EARS-Net

National Institute of Public Health, www.szu.cz | National Reference Laboratory for Antibiotics

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Czech Republic, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	85	85	85	81
Population sample representativeness	High	High	High	High
Hospital sample representativeness	High	High	High	High
Blood culture sets/ 1000 patient-days	18.6	18.0	18.0	17.0
Isolate sample representativeness	High	High	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Czech Republic, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	94	96	100	98
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	98	98	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Czech Republic, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)
E. coli	45	3 174	17	44	3075	16	43	3201	17	48	3650	19
K. pneumoniae	46	1418	34	45	1385	30	46	1330	27	48	1485	31
P. aeruginosa	44	464	37	43	465	37	44	411	36	47	539	36
Acinetobacter spp.	15	60	33	15	57	22	17	55	31	21	91	32
S. pneumoniae	44	284	32	42	267	32	46	366	24	47	378	26
S. aureus	46	1806	23	45	1887	21	47	1944	21	48	2244	24
E. faecalis	43	547	35	42	515	31	41	529	30	44	594	35
E. faecium	36	322	40	38	259	39	39	264	36	41	358	37

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Czech Republic and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Czech Republic and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Czech Republic and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Czech Republic and EU/EEA population-weighted mean, 2011–2018

Denmark

National institutions/organisations participating in EARS-Net

Statens Serum Institut | Danish Study Group for Antimicrobial Resistance Surveillance (DANRES), www.danmap.org

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Denmark, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	100	100	100	100
Population sample representativeness	High	High	High	High
Hospital sample representativeness	High	High	High	High
Blood culture sets/ 1000 patient-days	117.2	121.9	138.5	142.9
Isolate sample representativeness	High	High	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Denmark, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	100	92	91	82
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Denmark, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	11	4597	3	11	4847	2	10	5123	2	10	5398	8
K. pneumoniae	11	939	5	11	1156	4	10	1186	3	10	1280	7
P. aeruginosa	11	442	4	11	460	5	10	484	6	10	489	9
Acinetobacter spp.	10	68	Unknown	11	72	8	9	68	5	8	55	8
S. pneumoniae	11	747	Unknown	10	707	Unknown	10	727	Unknown	10	760	Unknown
S. aureus	11	1876	Unknown	10	1963	Unknown	10	1996	Unknown	10	2181	Unknown
E. faecalis	11	610	8	11	600	8	10	674	6	10	606	8
E. faecium	11	693	35	11	685	31	10	786	30	10	782	27

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Denmark and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Denmark and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Denmark and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Denmark and EU/EEA population-weighted mean, 2011–2018

Estonia

National institutions/organisations participating in EARS-Net

Estonian Health Board | East-Tallinn Central Hospital | Tartu University Hospital

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Estonia, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	100	100	100	100
Population sample representativeness	High	High	High	High
Hospital sample representativeness	High	High	High	High
Blood culture sets/ 1000 patient-days	23.2	26.6	34.1	31.9
Isolate sample representativeness	High	High	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Estonia, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	91	100	100	100
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Estonia, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	11	513	13	11	702	10	10	788	9	10	850	7
K. pneumoniae	9	133	28	10	183	20	10	161	20	9	206	17
P. aeruginosa	7	38	37	8	56	33	9	57	39	7	48	19
Acinetobacter spp.	5	8	25	3	8	13	9	16	19	7	14	21
S. pneumoniae	10	102	19	11	112	16	11	141	10	9	142	10
S. aureus	11	231	15	11	314	12	10	290	8	9	360	8
E. faecalis	10	59	34	9	56	25	10	71	23	8	88	20
E. faecium	7	44	34	8	64	38	10	52	37	7	64	36

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Estonia and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Estonia and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Estonia and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Estonia and EU/EEA population-weighted mean, 2011–2018

Finland

National institutions/organisations participating in EARS-Net

Finnish Institute for Health and Welfare, www.thl.fi, Department of Health Security | Finnish Study Group for Antimicrobial Resistance (FiRe), www.finres.fi | Finnish Hospital Infection Program (SIRO), thl.fi/en/web/ infectious-diseases/surveillance/healthcare-associated-infections

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Finland, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	100	98	100	100
Population sample representativeness	High	High	High	High
Hospital sample representativeness	High	Unknown	High	High
Blood culture sets/ 1000 patient-days	104.7	Unknown	154.9	150.1
Isolate sample representativeness	High	Unknown	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Finland, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	94	100	94	94
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Finland, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	20	4425	1	20	4833	1	20	5 3 1 5	1	19	5057	1
K. pneumoniae	20	658	3	20	770	3	20	758	2	19	810	4
P. aeruginosa	20	341	4	20	352	6	20	378	3	19	391	5
Acinetobacter spp.	16	43	4	12	28	0	11	37	0	14	28	0
S. pneumoniae	20	788	2	20	810	1	20	835	1	19	662	0
S. aureus	20	2070	2	18	1890	3	20	2439	3	18	2105	3
E. faecalis	20	478	2	20	499	3	20	549	0	19	528	5
E. faecium	20	299	7	20	295	10	20	301	6	19	290	4

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Finland and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Finland and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Finland and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Finland and EU/EEA population-weighted mean, 2011–2018

France

National institutions/organisations participating in EARS-Net

Santé Publique France, www.santepubliquefrance.fr | French National Observatory for the Epidemiology of Bacterial Resistance to Antimicrobials (ONERBA) through 3 participating networks: Azay-Résistance, Île-de-France, Réussir networks | French National Observatory for the Epidemiology of Bacterial Resistance to Antimicrobials (ONERBA) through 3 participating networks: Azay-Résistance, Île-de-France, Réussir networks, www.onerba.org | National Reference Centre for Pneumococci, www.cnr-pneumo.com

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, France, 2015-2018

	2015	2016	2017	2018								
Estimated national population coverage (%)*												
Laboratories collecting S. pneumoniae (CNRP)	67	51	58**	61								
Laboratories collecting others species (Onerba)	19	20	22	21								
Population sample representativeness	High	High	High	High								
Hospital sample representativeness	High	High	High	High								
Blood culture sets/ 1000 patient-days***	79.9	77.1	88.1	105.2								
Isolate sample representativeness	High	High	High	High								
others species (Onerba) Population sample representativeness Hospital sample representativeness Blood culture sets/ 1000 patient-days*** Isolate sample representativeness	19 High High 79-9 High	20 High High 77.1 High	22 High High 88.1 High	21 High High 105.2 High								

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, France, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	95	86	87	71
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

* Calculation based on proportion hospital days in participating hospitals out of total hospital days in the country ** Restricted to first half of the year *** Calculated only for Onerba Network

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), France, 2015-2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	54	11067	8	49	11337	9	54	13 392	8	49	12645	8
K. pneumoniae	53	2 3 5 0	17	49	2608	17	54	2904	16	49	3043	17
P. aeruginosa	53	1956	24	49	1988	23	36	1721	22	34	1902	25
Acinetobacter spp.	48	434	14	48	454	18	52	475	16	47	498	11
S. pneumoniae	198	1068	Unknown	175	1046	Unknown	169**	614**	Unknown	142	1045	Unknown
S. aureus	54	5597	15	50	5699	14	54	6668	14	49	7097	15
E. faecalis	53	1999	21	49	2022	19	53	2 2 5 9	19	48	2300	20
E. faecium	53	853	29	48	819	28	53	1000	27	49	1001	27

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

** Restricted to first half of the year for 2017

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), France and EU/EEA populationweighted mean, 2011-2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, France and EU/EEA populationweighted mean, 2011-2018

Escherichia coli. Percentage (%) of invasive isolates with population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, France and EU/EEA population-weighted mean, 2011-2018

Germany

National institutions/organisations participating in EARS-Net Robert Koch Institute, www.rki.de

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Germany, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	22	26	30	27
Population sample representativeness	High	High	High	High
Hospital sample representativeness	Medium	Medium	Medium	Medium
Blood culture sets/ 1000 patient-days	24.9	26.2	27.2	30.8
Isolate sample representativeness	High	High	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Germany, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	92	93	91	91
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	94	83	81	86

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Germany, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	isolates (N)	Isolates from ICUs (%)
E. coli	30	9036	14	41	17 199	14	56	22945	14	46	21521	14
K. pneumoniae	29	1584	20	40	3070	22	55	3857	21	46	3885	22
P. aeruginosa	29	972	27	39	1423	27	55	1896	26	45	1742	26
Acinetobacter spp.	25	340	19	38	463	18	50	543	17	43	520	15
S. pneumoniae	29	772	21	40	1403	23	54	2049	22	46	1882	24
S. aureus	30	5026	21	41	9870	20	56	13141	21	46	11617	21
E. faecalis	30	1725	23	41	2959	24	56	4002	24	46	3528	23
E. faecium	29	1348	42	41	2049	40	56	2648	40	45	2388	43

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Germany and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Germany and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Germany and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Germany and EU/EEA population-weighted mean, 2011–2018

Greece

National institutions/organisations participating in EARS-Net

Hellenic Pasteur Institute | National School of Public Health | National and Kapodistrian University of Athens, Medical School, www.mednet.gr/whonet

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Greece, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	55	55	Unknown	68
Population sample representativeness	Unknown	Unknown	Unknown	High
Hospital sample representativeness	Unknown	Unknown	Unknown	High
Blood culture sets/ 1000 patient-days	Unknown	Unknown	Unknown	Unknown
Isolate sample representativeness	Unknown	Unknown	Unknown	Medium

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Greece, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	89	96	89	96
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	7	12	13	21

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Greece, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	29	1218	3	31	1306	4	32	1472	5	37	1642	5
K. pneumoniae	28	1187	37	30	1183	40	33	1363	37	36	1500	37
P. aeruginosa	28	680	35	31	705	41	31	821	37	37	859	37
Acinetobacter spp.	29	1001	52	29	903	57	32	1096	50	34	1015	48
S. pneumoniae	-	-	-	-	-	-	-	-	-	-	-	-
S. aureus	29	635	8	31	682	10	33	833	10	36	889	7
E. faecalis	28	506	27	28	576	34	33	638	24	36	682	28
E. faecium	26	320	30	28	358	31	31	412	25	35	529	25

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Greece and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Greece and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Greece and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Greece and EU/EEA population-weighted mean, 2011–2018

Hungary

National institutions/organisations participating in EARS-Net National Public Health Center, www.oek.hu

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Hungary, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	90	90	Unknown	90
Population sample representativeness	High	High	Unknown	High
Hospital sample representativeness	Unknown	Unknown	Unknown	High
Blood culture sets/ 1000 patient-days	10.4	9.8	11.5	12.2
Isolate sample representativeness	Unknown	Unknown	Unknown	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Hungary, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	100	100	97	93
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Hungary, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	30	2026	14	29	1995	12	31	2031	12	29	2373	11
K. pneumoniae	27	706	31	29	723	27	29	693	24	28	850	24
P. aeruginosa	29	770	47	29	740	44	30	735	49	29	807	40
Acinetobacter spp.	25	467	53	26	401	56	31	358	50	26	358	54
S. pneumoniae	27	181	28	27	174	24	27	204	16	25	207	20
S. aureus	27	1517	20	28	1668	19	28	1566	18	27	1721	17
E. faecalis	27	730	35	28	786	36	30	769	36	29	750	36
E. faecium	23	240	44	25	272	46	27	315	44	29	303	42

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Hungary and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Hungary and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Hungary and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Hungary and EU/EEA population-weighted mean, 2011–2018

Iceland

National institutions/organisations participating in EARS-Net

National University Hospital of Iceland | Centre for Health Security and Infectious Disease Control

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Iceland, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	100	100	Unknown	100
Population sample representativeness	High	High	Unknown	High
Hospital sample representativeness	Unknown	Unknown	Unknown	High
Blood culture sets/ 1000 patient-days	Unknown	Unknown	Unknown	50.6
Isolate sample representativeness	Unknown	Unknown	Unknown	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Iceland, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	100	100	100	50
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	50	50	50	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Iceland, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	isolates (N)	Isolates from ICUs (%)	Laboratories (N)	isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	2	173	1	2	192	1	2	213	0	2	198	2
K. pneumoniae	2	36	0	2	25	4	2	17	0	2	16	7
P. aeruginosa	2	12	0	2	17	13	1	17	18	2	12	0
Acinetobacter spp.	1	6	17	1	3	0	1	6	0	1	2	Unknown
S. pneumoniae	1	25	0	2	19	5	2	27	4	2	31	3
S. aureus	2	88	3	2	76	1	2	69	7	2	82	9
E. faecalis	2	21	0	2	24	5	2	33	3	2	30	7
E. faecium	1	20	16	1	16	13	1	17	12	2	16	21

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Iceland and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Iceland and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Iceland and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Iceland and EU/EEA population-weighted mean, 2011–2018

Ireland

National institutions/organisations participating in EARS-Net Health Protection Surveillance Centre, www.hpsc.ie

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Ireland, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	97	99	100	100
Population sample representativeness	High	High	High	High
Hospital sample representativeness	High	High	High	High
Blood culture sets/ 1000 patient-days	53.0	57.5	58.0	57.3
Isolate sample representativeness	High	High	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Ireland, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	92	90	85	87
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	92	91	94	97

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Ireland, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	39	2649	Unknown	39	2991	Unknown	39	3125	Unknown	38	3239	Unknown
K. pneumoniae	30	389	Unknown	32	453	Unknown	35	479	Unknown	34	483	Unknown
P. aeruginosa	29	195	Unknown	30	243	Unknown	33	288	Unknown	29	273	Unknown
Acinetobacter spp.	21	86	Unknown	25	68	Unknown	23	66	Unknown	17	62	Unknown
S. pneumoniae	30	303	Unknown	31	363	Unknown	31	412	Unknown	32	455	Unknown
S. aureus	37	1057	Unknown	37	1143	Unknown	37	1144	Unknown	37	1188	Unknown
E. faecalis	35	292	Unknown	34	290	Unknown	33	340	Unknown	36	332	Unknown
E. faecium	29	405	Unknown	31	423	Unknown	33	442	Unknown	30	419	Unknown

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Ireland and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Ireland and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Ireland and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Ireland and EU/EEA population-weighted mean, 2011–2018

Italy

National institutions/organisations participating in EARS-Net National Institute of Health, www.iss.it

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Italy, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	15	17	21	36
Population sample representativeness	Unknown	Unknown	Medium	High
Hospital sample representativeness	Unknown	Unknown	Unknown	High
Blood culture sets/ 1000 patient-days	Unknown	Unknown	Unknown	55-4
Isolate sample representativeness	Unknown	Unknown	Unknown	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Italy, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	95	92	97	95
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Italy, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	45	5605	8	46	6 110	7	54	7478	6	97	16539	7
K. pneumoniae	43	2 0 1 5	28	47	2 3 1 4	27	55	2720	25	98	5913	23
P. aeruginosa	41	1083	29	43	1207	25	54	1455	24	95	3 0 5 0	23
Acinetobacter spp.	40	667	56	41	708	46	48	878	42	92	1392	42
S. pneumoniae	39	479	10	43	515	11	52	673	9	80	1160	9
S. aureus	46	3300	15	46	3309	13	55	4 2 1 3	14	97	8581	12
E. faecalis	45	1622	24	47	1617	22	55	2004	23	94	4 15 3	19
E. faecium	45	771	27	47	958	21	54	1085	20	92	2304	19

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Italy and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Italy and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Italy and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Italy and EU/EEA population-weighted mean, 2011–2018

Latvia

National institutions/organisations participating in EARS-Net Disease Prevention and Control Center of Latvia, www.spkc.gov.lv

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Latvia, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	90	90	90	90
Population sample representativeness	Medium	High	High	High
Hospital sample representativeness	Medium	Medium	Medium	Medium
Blood culture sets/ 1000 patient-days	6.7	6.6	6.1	8.0
Isolate sample representativeness	Medium	Medium	Medium	Medium

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Latvia, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	100	94	88	100
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	13	27	21	53

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Latvia, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)
E. coli	11	201	29	11	253	18	12	205	20	11	348	27
K. pneumoniae	11	115	51	8	95	33	7	116	41	13	204	36
P. aeruginosa	6	13	12	5	16	31	4	14	64	4	39	31
Acinetobacter spp.	6	61	56	7	82	56	7	34	62	7	51	65
S. pneumoniae	9	64	53	8	63	60	9	53	38	7	69	38
S. aureus	15	253	18	14	286	19	11	229	22	14	376	20
E. faecalis	10	60	37	12	89	33	8	74	36	10	89	38
E. faecium	10	34	47	6	56	46	5	39	54	7	49	41

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Latvia and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Latvia and EU/EEA populationweighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Latvia and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Latvia and EU/EEA population-weighted mean, 2011–2018

Lithuania

National institutions/organisations participating in EARS-Net

National Public Health Surveillance Laboratory, www.nvspl.lt | Institute of Hygiene, www.hi.lt

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Lithuania, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	90	100	100	100
Population sample representativeness	High	High	High	High
Hospital sample representativeness	Unknown	High	High	High
Blood culture sets/ 1000 patient-days	Unknown	7.1	6.3	5.3
Isolate sample representativeness	High	High	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Lithuania, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	100	100	100	94
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Lithuania, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	isolates (N)	Isolates from ICUs (%)	Laboratories (N)	isolates (N)	Isolates from ICUs (%)	Laboratories (N)	isolates (N)	Isolates from ICUs (%)
E. coli	15	583	22	17	797	21	16	852	19	17	1109	17
K. pneumoniae	12	179	39	16	326	31	15	326	30	17	371	24
P. aeruginosa	9	41	37	13	74	36	13	89	36	13	101	32
Acinetobacter spp.	11	73	62	11	87	64	12	87	56	13	88	58
S. pneumoniae	14	87	41	12	99	24	14	109	24	13	93	29
S. aureus	14	376	24	17	505	22	16	515	19	18	693	24
E. faecalis	12	81	37	13	86	25	13	111	23	14	138	25
E. faecium	8	52	40	13	61	38	13	80	31	14	99	34

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Lithuania and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Lithuania and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Lithuania and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Lithuania and EU/EEA population-weighted mean, 2011–2018

Luxembourg

National institutions/organisations participating in EARS-Net

National Health Laboratory | Microbiology Laboratory, Centre Hospitalier de Luxembourg

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Luxembourg, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	100	100	100	100
Population sample representativeness	High	High	Unknown	High
Hospital sample representativeness	Unknown	Unknown	Unknown	High
Blood culture sets/ 1000 patient-days	Unknown	26.0	Unknown	28.2
Isolate sample representativeness	Unknown	Unknown	Unknown	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Luxembourg, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	100	100	100	100
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Luxembourg, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	5	347	7	4	419	11	4	433	8	4	424	10
K. pneumoniae	4	60	19	4	78	25	4	99	21	4	85	18
P. aeruginosa	4	28	17	4	40	15	4	56	21	4	59	7
Acinetobacter spp.	2	8	0	2	8	38	2	8	0	2	11	9
S. pneumoniae	5	29	17	4	51	10	4	49	12	4	45	23
S. aureus	7	135	21	4	188	25	4	200	17	4	181	13
E. faecalis	5	58	17	4	48	24	4	87	27	4	51	21
E. faecium	4	23	55	4	31	20	4	34	32	4	29	20

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Luxembourg and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Luxembourg and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Luxembourg and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Luxembourg and EU/EEA population-weighted mean, 2011–2018

Malta

National institutions/organisations participating in EARS-Net Malta Mater Dei Hospital, Msida

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Malta, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	95	95	95	95
Population sample representativeness	High	High	High	High
Hospital sample representativeness	High	High	High	High
Blood culture sets/ 1000 patient-days	22.7	25.0	26.3	29.2
Isolate sample representativeness	High	High	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Malta, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	100	100	100	100
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Malta, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	1	238	2	1	328	4	1	314	1	1	332	2
K. pneumoniae	1	88	10	1	102	9	1	117	10	1	137	13
P. aeruginosa	1	25	8	1	40	5	1	37	19	1	29	14
Acinetobacter spp.	1	15	0	1	7	14	1	9	0	1	9	0
S. pneumoniae	1	20	5	1	10	0	1	19	7	1	37	0
S. aureus	1	87	4	1	97	4	1	97	1	1	90	10
E. faecalis	1	31	7	1	33	0	1	29	5	1	32	6
E. faecium	1	6	0	1	12	25	1	13	10	1	15	0

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Malta and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Malta and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Malta and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Malta and EU/EEA population-weighted mean, 2011–2018

As less than 10 isolates were reported for Malta for 2012 and 2015, no resistance percentages are displayed for these years.

Netherlands

National institutions/organisations participating in EARS-Net National Institute for Public Health and the Environment, www.rivm.nl

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Netherlands, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	65	65	65	65
Population sample representativeness	High	High	High	High
Hospital sample representativeness	High	High	High	High
Blood culture sets/ 1000 patient-days	Unknown	Unknown	Unknown	Unknown
Isolate sample representativeness	High	High	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Netherlands, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	73	85	85	92
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	93	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Netherlands, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	27	5380	10	32	6398	9	33	6687	7	33	7 0 1 6	6
K. pneumoniae	27	908	13	32	1135	11	33	1190	11	33	1296	8
P. aeruginosa	27	502	22	31	543	14	33	657	17	33	670	13
Acinetobacter spp.	21	74	19	31	108	13	30	122	21	30	133	16
S. pneumoniae	27	1301	15	32	1517	12	33	1511	10	33	1643	9
S. aureus	27	2107	15	32	2702	11	33	2695	11	33	3052	11
E. faecalis	27	648	22	32	783	21	33	895	19	33	914	19
E. faecium	27	572	53	32	686	50	33	808	47	33	831	43

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Netherlands and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Netherlands and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Netherlands and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Netherlands and EU/EEA population-weighted mean, 2011–2018

Norway

National institutions/organisations participating in EARS-Net

University Hospital of North Norway | Norwegian Institute of Public Health | St. Olav University Hospital, Trondheim

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Norway, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	100	100	100	94
Population sample representativeness	High	High	High	High
Hospital sample representativeness	Unknown	Unknown	High	High
Blood culture sets/ 1000 patient-days	56.9	63.2	Unknown	47.4
Isolate sample representativeness	Unknown	Unknown	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Norway, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	100	100	100	89
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Norway, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	isolates (N)	Isolates from ICUs (%)
E. coli	18	3302	4	18	3 618	4	18	3734	3	18	3880	3
K. pneumoniae	18	701	6	18	811	5	18	781	4	18	738	5
P. aeruginosa	18	230	7	18	227	5	18	205	5	18	250	5
Acinetobacter spp.	11	32	13	12	33	6	12	31	10	11	32	13
S. pneumoniae	18	429	5	18	504	3	18	482	6	18	506	6
S. aureus	18	1457	6	18	1485	4	18	1507	5	18	1630	6
E. faecalis	18	439	5	18	530	6	18	526	5	18	525	6
E. faecium	18	186	11	18	215	15	18	209	10	18	174	10

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Norway and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Norway and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Norway and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Norway and EU/EEA population-weighted mean, 2011–2018

Poland

National institutions/organisations participating in EARS-Net

National Medicines Institute, Department of Epidemiology and Clinical Microbiology | National Reference Centre for Susceptibility Testing

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Poland, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	14	20	19	17
Population sample representativeness	Medium	Medium/ High	Medium/ High	Medium
Hospital sample representativeness	Medium	High	High	Medium
Blood culture sets/ 1000 patient-days	31.9	30.3	38.1	38.6
Isolate sample representativeness	Medium	High	High	Medium

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Poland, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	93	92	96	93
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Poland, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)
E. coli	48	1616	12	67	2735	13	65	2881	28	55	2627	27
K. pneumoniae	47	679	36	66	1142	35	65	1203	41	53	1221	47
P. aeruginosa	40	260	38	60	403	32	64	417	45	54	394	45
Acinetobacter spp.	38	246	59	53	394	50	59	352	59	48	290	63
S. pneumoniae	40	230	14	57	343	14	60	374	30	53	369	28
S. aureus	48	1192	16	65	1842	16	66	1848	32	57	1986	30
E. faecalis	47	432	37	65	743	29	65	758	46	53	733	43
E. faecium	41	216	37	55	405	30	60	410	43	49	385	44

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Poland and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Poland and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Poland and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Poland and EU/EEA population-weighted mean, 2011–2018

Portugal

National institutions/organisations participating in EARS-Net

National Institute of Health Doutor Ricardo Jorge, www.insarj.pt | Ministry of Health Directorate-General of Health | Directorate-General of Health

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Portugal, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	96	97	97	97
Population sample representativeness	High	High	High	High
Hospital sample representativeness	High	High	High	High
Blood culture sets/ 1000 patient-days	195.4	Unknown	148.1	206.9
Isolate sample representativeness	High	High	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Portugal, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	92	88	88	83
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	97	99	100	98

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Portugal, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	58	5377	5	60	5786	4	62	6 4 5 2	4	59	5921	3
K. pneumoniae	58	2099	10	59	2352	10	61	2743	9	58	2604	9
P. aeruginosa	56	1192	15	57	1230	13	57	1220	12	55	1115	12
Acinetobacter spp.	43	312	17	39	207	21	36	174	16	39	127	17
S. pneumoniae	51	843	3	57	928	2	54	1056	1	55	1062	Unknown
S. aureus	57	3645	7	59	3482	7	64	3789	5	59	3940	7
E. faecalis	53	981	10	56	972	1	58	1014	8	56	986	9
E. faecium	43	459	22	45	411	2	46	467	16	47	443	16

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Portugal and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Portugal and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Portugal and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Portugal and EU/EEA population-weighted mean, 2011–2018

Romania

National institutions/organisations participating in EARS-Net National Institute of Public Health

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Romania, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	15	Unknown	Unknown	11
Population sample representativeness	Unknown	Unknown	Unknown	Poor
Hospital sample representativeness	Unknown	Unknown	Unknown	Poor
Blood culture sets/ 1000 patient-days	Unknown	Unknown	Unknown	34
Isolate sample representativeness	Unknown	Unknown	Unknown	Poor

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Romania, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	94	87	93	93
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	28	31	38	69

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Romania, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	12	371	10	13	420	10	14	518	12	17	654	13
K. pneumoniae	13	271	39	13	344	38	14	339	40	17	443	44
P. aeruginosa	11	92	49	13	93	39	14	132	45	17	156	40
Acinetobacter spp.	13	190	56	13	160	54	12	183	70	17	218	73
S. pneumoniae	9	70	1	8	60	12	11	81	21	12	93	24
S. aureus	13	424	21	14	495	25	14	535	21	17	626	24
E. faecalis	12	113	21	13	115	34	14	128	33	17	178	25
E. faecium	10	72	35	13	78	46	13	64	44	15	79	43

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Romania and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Romania and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Romania and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Romania and EU/EEA population-weighted mean, 2011–2018

Slovakia

National institutions/organisations participating in EARS-Net

National Reference Centre for Antimicrobial Resistance | Public Health Authority of the Slovak Republic | Regional Public Health Authority Banska Bystrica

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Slovakia, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	75	70	68	64
Population sample representativeness	High	High	High	High
Hospital sample representativeness	High	High	High	High
Blood culture sets/ 1000 patient-days	20.1	20.3	20.8	23.7
Isolate sample representativeness	Unknown	Unknown	Unknown	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Slovakia, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	100	100	100	100
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Slovakia, 2015–2018

2015				2016			2017			2018		
Pathogen	Laboratories (N)	isolates (N)	Isolates from ICUs (%)	Laboratories (N)	isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	14	896	14	13	829	14	13	882	13	12	983	14
K. pneumoniae	14	475	31	13	466	26	13	468	28	11	505	33
P. aeruginosa	14	278	35	12	191	35	13	211	27	11	259	32
Acinetobacter spp.	14	154	33	13	115	32	13	126	35	11	146	36
S. pneumoniae	9	34	35	5	13	31	10	40	28	9	47	13
S. aureus	14	583	16	13	572	19	13	614	16	12	627	25
E. faecalis	14	255	31	13	233	22	13	226	28	12	256	32
E. faecium	14	146	36	12	126	27	11	122	32	11	168	33

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Slovakia and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Slovakia and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Slovakia and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Slovakia and EU/EEA population-weighted mean, 2011–2018

Slovenia

National institutions/organisations participating in EARS-Net

National Institute of Public Health, www.nijz.si | Medical faculty, University of Ljubljana | National Laboratory of Health, Environment and Food

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Slovenia, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	99	99	99	99
Population sample representativeness	High	High	High	High
Hospital sample representativeness	High	High	High	High
Blood culture sets/ 1000 patient-days	35.1	35.0	41.2	36.8
Isolate sample representativeness	High	High	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Slovenia, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	100	100	100	100
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	91	91	91	91

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Slovenia, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	10	1326	8	10	1420	10	10	1435	9	10	1668	7
K. pneumoniae	10	237	17	10	267	19	10	312	18	10	289	14
P. aeruginosa	10	141	26	10	143	38	10	138	28	10	174	24
Acinetobacter spp.	7	31	29	7	60	35	4	36	50	8	39	33
S. pneumoniae	10	323	14	10	269	12	10	319	10	10	271	13
S. aureus	10	513	11	10	534	11	10	576	12	10	606	9
E. faecalis	10	133	17	10	161	24	10	171	16	10	162	15
E. faecium	9	124	34	9	111	42	9	149	41	9	134	32

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Slovenia and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Slovenia and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Slovenia and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Slovenia and EU/EEA population-weighted mean, 2011–2018

Spain

National institutions/organisations participating in EARS-Net Health Institute Carlos III, www.isciii.es | National Centre for Microbiology

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Spain, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	40	38	37	Unknown
Population sample representativeness	High	High	High	Unknown
Hospital sample representativeness	High	High	High	Unknown
Blood culture sets/ 1000 patient-days	46.2	60.4	Unknown	Unknown
Isolate sample representativeness	High	High	High	Unknown

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Spain, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	98	98	90	95
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	43	46	58	71

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Spain, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	40	6493	5	38	6800	5	36	5808	5	39	7933	Unknown
K. pneumoniae	40	1510	12	38	1680	11	35	1446	11	38	1995	Unknown
P. aeruginosa	40	884	21	37	843	19	35	843	16	38	1122	Unknown
Acinetobacter spp.	26	96	41	24	106	37	21	88	47	18	81	37
S. pneumoniae	36	672	9	36	672	7	33	722	7	37	1033	Unknown
S. aureus	39	2002	11	37	1972	10	36	1873	10	39	2531	Unknown
E. faecalis	39	992	15	37	986	13	35	931	14	38	1163	Unknown
E. faecium	38	580	15	35	630	18	34	574	15	37	769	Unknown

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Spain and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Spain and EU/EEA populationweighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Spain and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Spain and EU/EEA population-weighted mean, 2011–2018

Sweden

National institutions/organisations participating in EARS-Net The Public Health Agency of Sweden, www.folkhalsomyndigheten.se

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, Sweden, 2015-2018

	2015	2016	2017	2018
Estimated national population coverage (%)	75	75	57	51
Population sample representativeness	High	High	High	High
Hospital sample representativeness	High	High	High	High
Blood culture sets/ 1000 patient-days	128.2	139.0	156.7	107.0
Isolate sample representativeness	High	High	High	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, Sweden, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	89	100	100	100
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	100	100	100	100

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), Sweden, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	17	6768	Unknown	14	6970	Unknown	10	5807	Unknown	9	5392	Unknown
K. pneumoniae	17	1141	Unknown	15	1537	Unknown	10	1034	Unknown	9	1089	Unknown
P. aeruginosa	17	435	Unknown	13	473	Unknown	10	446	Unknown	9	412	Unknown
Acinetobacter spp.	9	35	Unknown	12	86	Unknown	1	54	Unknown	1	55	Unknown
S. pneumoniae	17	867	Unknown	14	904	Unknown	11	755	Unknown	9	676	Unknown
S. aureus	17	3 4 1 5	Unknown	15	3903	Unknown	11	3800	Unknown	9	3640	Unknown
E. faecalis	17	868	Unknown	14	1019	Unknown	11	1630	Unknown	9	687	Unknown
E. faecium	17	412	Unknown	14	561	Unknown	11	622	Unknown	9	428	Unknown

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), Sweden and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, Sweden and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, Sweden and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, Sweden and EU/EEA population-weighted mean, 2011–2018

United Kingdom

National institutions/organisations participating in EARS-Net

Public Health England, www.gov.uk/government/organisations/public-health-england | Health Protection Scotland, www.hps.scot.nhs.uk | Public Health Agency Northern Ireland | Public Health Wales, www.publichealthwales.org

Coverage and representativeness of population, hospitals and isolates included in EARS-Net, United Kingdom, 2015–2018

	2015	2016	2017	2018
Estimated national population coverage (%)	Unknown	Unknown	Unknown	Unknown*
Population sample representativeness	Unknown	Unknown	Unknown	Medium*
Hospital sample representativeness	Unknown	Unknown	Unknown	High
Blood culture sets/ 1000 patient-days	65.4	59.8	52.0	Unknown
Isolate sample representativeness	Unknown	Unknown	Unknown	High

Laboratories contributing data to EARS-Net: participation in EARS-Net EQA and use of clinical guidelines, United Kingdom, 2015–2018

	2015	2016	2017	2018
Percentage laboratories participating in EARS-Net EQA	90	88	82	82
Percentage laboratories using EUCAST or EUCAST harmonised guidelines	98	98	96	100

* Estimated 100 % population coverage and high representativeness in Northern Ireland, Scotland and Wales.

Annual number of reporting laboratories*, number of reported isolates and proportion of isolates reported from patients in intensive care units (ICUs), United Kingdom, 2015–2018

	2015			2016			2017			2018		
Pathogen	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	lsolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)	Laboratories (N)	Isolates (N)	Isolates from ICUs (%)
E. coli	22	6 1 17	Unknown	91	23714	Unknown	106	31579	Unknown	105	32571	Unknown
K. pneumoniae	22	1077	Unknown	89	4236	Unknown	105	5 5 1 9	Unknown	104	5808	Unknown
P. aeruginosa	22	541	Unknown	87	2187	Unknown	104	2911	Unknown	100	2817	Unknown
Acinetobacter spp.	20	153	Unknown	77	615	Unknown	96	818	Unknown	91	746	Unknown
S. pneumoniae	44	1126	Unknown	90	3522	Unknown	102	4373	Unknown	99	4571	Unknown
S. aureus	47	3125	Unknown	92	7798	Unknown	106	10 0 3 1	Unknown	103	9646	Unknown
E. faecalis	22	422	Unknown	87	1868	Unknown	103	2792	Unknown	102	2887	Unknown
E. faecium	20	354	Unknown	85	1919	Unknown	101	2306	Unknown	98	2730	Unknown

* Number of laboratories reporting at least one isolate during the specific year. Total number of laboratories participating in EARS-Net might be higher.

Staphylococcus aureus. Percentage (%) of invasive isolates with resistance to meticillin (MRSA), United Kingdom and EU/EEA population-weighted mean, 2011–2018

Klebsiella pneumoniae. Percentage (%) of invasive isolates with resistance to carbapenems, United Kingdom and EU/EEA population-weighted mean, 2011–2018

Escherichia coli. Percentage (%) of invasive isolates with resistance to third-generation cephalosporins, United Kingdom and EU/EEA population-weighted mean, 2011–2018

Enterococcus faecium. Percentage (%) of invasive isolates with resistance to vancomycin, United Kingdom and EU/EEA population-weighted mean, 2011–2018

ECDC is committed to ensuring the transparency and independence of its work

In accordance with the Staff Regulations for Officials and Conditions of Employment of Other Servants of the European Union and the ECDC Independence Policy, ECDC staff members shall not, in the performance of their duties, deal with a matter in which, directly or indirectly, they have any personal interest such as to impair their independence. Declarations of interest must be received from any prospective contractor(s) before any contract can be awarded.

www.ecdc.europa.eu/en/aboutus/transparency

HOW TO OBTAIN EU PUBLICATIONS

Free publications:

- one copy:
 - via EU Bookshop (http://bookshop.europa.eu);
- more than one copy or posters/maps: from the European Union's representations (http://ec.europa.eu/represent_en.htm); from the delegations in non-EU countries (http://eeas.europa.eu/delegations/index_ en.htm);

by contacting the Europe Direct service (http://europa.eu/europedirect/index_en.htm) or calling oo 800 6 7 8 9 10 11 (freephone number from anywhere in the EU) (*).

(*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you).

Priced publications:

• via EU Bookshop (http://bookshop.europa.eu).

European Centre for Disease Prevention and Control (ECDC)

Gustav III:s Boulevard 40, 16973 Solna, Sweden

Tel. +46 858601000 Fax +46 858601001 www.ecdc.europa.eu

An agency of the European Union www.europa.eu

Subscribe to our publications www.ecdc.europa.eu/en/publications

Contact us publications@ecdc.europa.eu

Follow us on Twitter @ECDC_EU

f Like our Facebook page www.facebook.com/ECDC.EU

