Package ‘epitweetr’

October 1, 2020
Title Early Detection of Public Health Threats from Twitter Data
Version 0.1.20

Description It allows you to automatically monitor trends of tweets by time, place and topic aim-
ing at detecting public health threats early through the detection of signals (e.g. an unusual in-
crease in the number of tweets). It was designed to focus on infectious diseases, and it can be ex-
tended to all hazards or other fields of study by modifying the topics and keywords.

License EUPL
URL https://github.com/EU-ECDC/epitweetr

BugReports https://github.com/EU-ECDC/epitweetr/issues

Encoding UTF-8

LazyData true

Imports bit64, dplyr, plyr, DT, httpuv, httr, jsonlite, keyring,
emayili, ggplot2, magrittr, parallel, plotly, rtweet, readxl,
rgeos, rgdal, rmarkdown, rnaturalearthdata, shiny, sp, stringr,

stats, tidyverse, tidytext, tokenizers, tools, utils, xtable,
xml2

RoxygenNote 7.1.0
Suggests knitr, taskscheduleR
VignetteBuilder knitr
NeedsCompilation no

Author Francisco Orchard [aut, ctr] (<https://orcid.org/0000-0001-5793-3301>,
Author of the package and original code),
Laura Espinosa [aut, cre, fnd] (Project manager, author of the design
and concept of the package, and package maintainer),
Ariana Wijermans [ctb] (Contributor to the design and concept of the
package),
Thomas Mollet [ctb, fnd] (Business owner of the project, and
contributor to the design and concept of the package),
Adrian Prodan [ctb],
Thomas Czernichow [ctb],
Maria Prieto Gonzalez [ctb],
Esther Kissling [ctb],
Michael Hohle [ctb]

https://github.com/EU-ECDC/epitweetr
https://github.com/EU-ECDC/epitweetr/issues

aggregate_tweets

Maintainer Laura Espinosa <laura.espinosa@ecdc.europa.eu>
Repository CRAN
Date/Publication 2020-10-01 08:30:09 UTC

R topics documented:

agEregate _tWEELS i it e e e e e e e e e e e e e e 2
check all e 4
CTEALE_IMNADP . .« « o v v v v e 4
create_topwords L e e e e e e e 6
detect_loop 7
download_dependencies 9
ears_t_reweighted L 10
EPILWEEII_APP -« « v v v v e e e e e e e e e e e e e e e e e e e 11
generate_alerts L. e e e e e 12
GEOtAZ tWEELS . . . v v v i e e e e e e e e e e e e e e e e e 13
EL_AZEIEZALES e e e e e e e e e e e e e 14
get_alerts 16
get_tasks . ..o 17
get_todays_sample_tweetsl e e 18
save_config e e e e 19
search_loop e 20
setup_config e 21
set_twitter_app_auth 23
trend_line e 24
update_geonames i e e e 26
update_languages e e e e 27
Index 29
aggregate_tweets Execute the aggregation task
Description

Get all the tweets from the Twitter Standard Search API json files and the geolocated tweets json
files obtained by calling (geotag_tweets) and store the results in the series folder as daily Rds files

Usage

aggregate_tweets(
series = list("country_counts”, "geolocated”, "topwords"),
tasks = get_tasks()

aggregate_tweets 3

Arguments
series List of series to aggregate, default: list("country_counts", "geolocated", "top-
words")
tasks Current tasks for reporting purposes, default: get_tasks()
Details

This function will launch a SPARK task of aggregating data collected from the Twitter Search API
and geolocated from geotag tweets. By doing the following steps: - Identify the last aggregates date
by looking into the series folder

- Look for date range of tweets collected since that day by looking at the stat json files produced by
the search loop

- For each day that has to be updated a list of all geolocated and search files to load will be produced
by looking at the stat files

- For each series passed as a parameter and for each date to update:

- a Spark task will be called that will deduplicate tweets for each topic, join them with gelocation
information, and aggregate them to the required level and return to the standard output as json lines

- the result of this task is parsed using jsonlite and saved into RDS files in the series folder

A prerequisite to this function is that the search_loop must have already collected tweets in the
search folder and that geotag_tweets has already run. Normally this function is not called directly
by the user but from the detect_loop function.

Value

the list of tasks updated with aggregate messages

See Also

detect_loop
geotag_tweets

generate_alerts

Examples

if (FALSE){
library(epitweetr)
setting up the data folder
message('Please choose the epitweetr data directory')
setup_config(file.choose())

aggregating all geolocated tweets collected since last aggregation for producing
all time series
aggregate_tweets()

4 create_map

check_all Run automatic sanity checks

Description

run a set of automated sanity checks for helping the user to troubleghot issues

Usage
check_all()

Details

This function executes a series of sanity checks, concerninr, java, bitness, task statusn dependencies
and Twitter authentication.

Value

Dataframe containing the statuses of all realized checks

Examples

if (FALSE){
#importing epitweer
library(epitweetr)
message('Please choose the epitweetr data directory')
setup_config(file.choose())
#running all tests
check_all()

create_map Plot the map report on the epitweetr dashboard

Description

Generates a bubble map plot of number of tweets by countries, for one topic

Usage

create_map(
topic = c(),
countries = c(1),
date_min = "1900-01-01",
date_max = "2100-01-01",
with_retweets = FALSE,

create_map 5
location_type = "tweet”,
caption = "",
proj = NULL,
forplotly = FALSE
)
Arguments
topic Character(1) containing the topic to use for the report
countries Character vector containing the name of the countries and regions to plot or their
respective indexes on the Shiny app, default: c(1)
date_min Date indicating start of the reporting period, default: "1900-01-01"
date_max Date indicating end of the reporting period, default: "2100-01-01"

with_retweets

location_type

caption

proj

forplotly

Details

Logical value indicating whether to include retweets in the time series, default:
FALSE

Character(1) vector indicating the location type. Possible values ’tweet’, "user’
or 'both’, default: ’tweet’

Character(1) vector indicating a caption to print at the bottom of the chart, de-
fault: ""

Parameter indicating the CRS (Corrdinate Reference System) to use on PROJ4
format CRS-class? If null and all countries are selected +proj=robin is used
(Robinson projection) otherwise the Lambert azimuthal equal-area projection
will be chosen, default: NULL

Logical(1) parameter indicating whether some hacks are activated to improve
plotly rendering, default: FALSE

Produces a bubble chart map for a particular topic on number of tweets collected based on the
provided parameters. The map will display information at country level if more than one country is
selected, otherwise it will display bubbles at the smallest possible location identified for each tweet
within the period which could be any administrative level or city level.

Tweets associated with a country but with no finer granularity are omitted when displaying a single

country.

When an aggregated zone is requested, all countries in that zone are included.

This functions requires that search_loop and detect_loop have already been run successfully to

show results.

Value

A named list containing two elements: ’chart’ with the ggplot2 figure and ’data’ containing the
dataframe that was used to build the map.

See Also

trend_line create_topwords aggregate_tweets geotag_tweets detect_loop search_loop
spTransform,coordinates,is.projected,CRS-class fortify,geom_polygon,geom_point

Examples

if(FALSE){

#Getting bubble chart for dengue for South America for last 30 days
message('Please choose the epitweetr data directory')

setup_config(file.choose())
create_map(
topic = "dengue”,
countries = "South America”,
date_min = as.Date(Sys.time())-30,
date_max=as.Date(Sys.time())
)

create_topwords

create_topwords Plot the top words report on the epitweetr dashboard

Description

Generates a bar plot of most popular words in tweets, for one topic

Usage

create_topwords(
topic,
country_codes = c(),
date_min = "1900-01-01",
date_max = "2100-01-01",
with_retweets = FALSE,
location_type = "tweet”,
top = 25

Arguments

topic Character(1) containing the topic to use for the report

country_codes Character vector containing the ISO 3166-1 alpha-2 countries to plot, default:

O
date_min Date indicating start of the reporting period, default: "1900-01-01"
date_max Date indicating end of the reporting period, default: "2100-01-01"

with_retweets Logical value indicating whether to include retweets in the time series, default:

FALSE

location_type Character(1) this parameter is currently being IGNORED since this report shows
only tweet location and cannot showed user or both locations for performance

reasons, default: ’tweet’

top numeric(1) Parameter indicating the number of words to show, default: 25

detect_loop 7

Details

Produces a bar chat showing the occurrences of the most popular words in the collected tweets
based on the provided parameters. For performance reasons on the aggregate_tweets function,
this report only shows tweet location and ignores the location_type parameter

This report may be empty for combinations of countries and topics with very few tweets since
for performance reasons, the calculation of top words is an approximation using chunks of 10.000
tweets.

This functions requires that search_loop and detect_loop have already been run successfully to
show results.

Value

A named list containing two elements: ’chart’ with the ggplot2 figure and ’data’ containing the
dataframe that was used to build the map.

See Also

trend_line create_map aggregate_tweets geotag_tweets detect_loop search_loop

Examples

if (FALSE){
message('Please choose the epitweetr data directory')
setup_config(file.choose())
#Getting topword chart for dengue for France, Chile, Australia for last 30 days
create_topwords(
topic = "dengue”,
country_codes = c("FR", "CL", "AU"),
date_min = as.Date(Sys.time())-30,
date_max=as.Date(Sys.time())

detect_loop Runs the detect loop

Description

Infinite loop ensuring the daily signal detection and email alerts

Usage

detect_loop(data_dir = NA)

8 detect_loop

Arguments
data_dir Path to the ’data directory’ containing application settings, models and collected
tweets. If not provided the system will try to reuse the existing one from last
session call of setup_config or use the EPI_HOME environment variable, de-
fault: NA
Details

The detect loop is composed of three *one shot tasks’ download_dependencies, update_geonames,
update_languages ensuring the system has all necessary components and data to run the three re-
current tasks, geotag_tweets, aggregate_tweets, generate_alerts

The loop report progress on the “tasks.json’ file which is read or created by this function.

The recurrent tasks are scheduled to be executed each ’detect span’ minutes, which is a parameter
set on the Shiny app.

If any of these tasks fails it will be retried three times before going to a abort status. Aborted tasks
can be relauched from the Shiny app.

Value

nothing

See Also

download_dependencies
update_geonames
update_languages
detect_loop
geotag_tweets
aggregate_tweets
generate_alerts

get_tasks

Examples

if (FALSE){
#Running the detect loop
library(epitweetr)
message('Please choose the epitweetr data directory')
setup_config(file.choose())
detect_loop()

download_dependencies 9

download_dependencies Updates Java dependencies

Description

Download Java dependencies of the application mainly related to Apache SPARK and Lucene,

Usage

download_dependencies(tasks = get_tasks())

Arguments

tasks Task object for reporting progress and error messages, default: get_tasks()

Details

Run a one shot task consisting of downloading Java and Scala dependencies, this is separated by
the following subtasks

* Download jar dependencies from configuration maven repo to project data folder. This in-
cludes, scala, spark, lucene. Packages to be downloaded are defined in package file ’sbt-
deps.txt’

* Download winutils from configuration url to project data folder. For more details on winu-
tils please see https://issues.apache.org/jira/browse/HADOOP-13223 and https://
issues.apache.org/jira/browse/HADOOP-16816

The URLs to download the JAR dependencies (maven package manager) and Winutils are on the
configuration tab of the Shiny app.

Normally this function is not called directly by the user but from the detect_loop function.

Value

The list of tasks updated with produced messages

See Also

detect_loop
get_tasks

Examples

if(FALSE){
library(epitweetr)
setting up the data folder
message('Please choose the epitweetr data directory')
setup_config(file.choose())

https://issues.apache.org/jira/browse/HADOOP-13223
https://issues.apache.org/jira/browse/HADOOP-16816
https://issues.apache.org/jira/browse/HADOOP-16816

10 ears_t_reweighted

geolocating last tweets
tasks <- download_dependencies()

ears_t_reweighted algorithm for outbreak detection, extends the EARS algorithm

Description

The simple 7 day running mean version of the Early Aberration Reporting System (EARS) algo-
rithm is extended as follows:

* proper computation of the prediction interval

» downweighting of previous signals, similar to the approach by Farrington (1996)

Usage

ears_t_reweighted(
ts,
alpha = 0.025,
alpha_outlier = 0.05,
k_decay = 4,
no_historic = 7L,
same_weekday_baseline = FALSE

)
Arguments
ts A numeric vector containing the counts of the univariate time series to monitor.
The last time point in ts is investigated
alpha The alpha is used to compute the upper limit of the prediction interval: (1-alpha)

*100%, default: 0.025

alpha_outlier Residuals beyond 1-alpha_outlier quantile of the the t(n-k-1) distribution are
downweighted, default: 0.05

k_decay Power k in the expression (r_star/r_threshold)"k determining the weight, de-
fault: 4
no_historic Number of previous values i.e -1, -2, ..., no_historic to include when computing

baseline parameters, default: 7
same_weekday_baseline
whether to calculate baseline using same weekdays or any day, default: FALSE
Details

for algorithm details see package vignette.

epitweetr_app 11

Value

A dataframe containing the monitored time point, the upper limit and whether a signal is detected
or not.

Author(s)

Michael Hohle <https://www.math.su.se/~hoehle>

Examples

if (FALSE){
library(epitweetr)
#Running the modifies version of the ears algorithm for a particular data series
ts <- c(150, 130, 122, 160, 155, 128, 144, 125, 300, 319, 289, 277, 500)
show(ears_t_reweighted(ts))

epitweetr_app Run the epitweetr Shiny app

Description
Open the epitweetr Shiny app, used to setup the search loop, the detect loop and to visualise the
outputs.

Usage

epitweetr_app(data_dir = NA)

Arguments
data_dir Path to the ’data directory’ containing application settings, models and collected
tweets. If not provided the system will try to reuse the existing one from last
session call of setup_config or use the EPI_HOME environment variable, de-
fault: NA
Details

The epitweetr app is the user entry point to the epitweetr package. This application will help the
user to setup the tweet collection process, manage all settings, see the interactive dashboard visual-
isations, export them to Markdown or PDF, and setup the alert emails.

All its functionality is described on the epitweetr vignette.

Value

The Shiny server object containing the launched application

12 generate_alerts

See Also

search_loop

detect_loop

Examples

if (FALSE){
#Running the epitweetr app
library(epitweetr)
message('Please choose the epitweetr data directory')
setup_config(file.choose())
epitweetr_app()

generate_alerts Execute the alert task

Description

Evaluate alerts for the last collected day for all topics and regions and send email alerts to sub-
scribers

Usage

generate_alerts(tasks = get_tasks())

Arguments

tasks current tasks for reporting purposes, default: get_tasks()

Details

This function calculates alerts for the last aggregated day and then send emails to subscribers.

The alert calculation is based on the country_counts time series which stores alerts by country, hour
and topics.

For each country and region the process starts by aggregating the last N days. A day is a block of
consecutive 24 hours ending before the hour of the collected last tweet. N is defined by the alert
baseline parameter on the configuration tab of the Shiny application (the default is N=7).

An alert will be produced when the number of tweets observed is above the threshold calculated
by the modified version of the EARS algorithm (for more details see the package vignette). The
behaviour of the alert detection algorithm is modified by the signal false positive rate (alpha), down-
weighting of previous alerts and weekly or daily baseline parameters as defined on the configuration
tab of the Shiny application and the topics file.

A prerequisite to this function is that the search_loop must already have stored collected tweets
in the search folder and that the geotagging and aggregation tasks have already been run. Normally
this function is not called directly by the user but from the detect_loop function.

geotag_tweets 13

Value

The list of tasks updated with produced messages

See Also

detect_loop
geotag_tweets

aggregate_tweets

Examples

if (FALSE){
library(epitweetr)
setting up the data folder
message('Please choose the epitweetr data directory')
setup_config(file.choose())

calculating alerts for last day tweets and sending emails to subscriptors
generate_alerts()

geotag_tweets Launches the geo-tagging loop

Description

This function will geolocate all tweets before the current hour that have not been already geolocated

Usage

geotag_tweets(tasks = get_tasks())

Arguments

tasks Tasks object for reporting progress and error messages, default: get_tasks()

Details

Geolocates tweets by collection date, and stores the result in the tweets/geolocated folder. It starts
from the last geolocated date until the last collected tweet. When running on a day that has been
partially geolocated, it will ignore tweets that have already been processed.

The geolocation is applied to several fields of tweets: text, original text (if retweet or quote), user
description, user declared location, user biography, API location. For each field it will perform the
following steps:

» Evaluate the part of the text which is more likely to be a location using an unsupervised
machine learning and language dependent model trained during update_languages

14 get_aggregates

* Match the selected text against a Lucene index of GeoNames database built during update_geonames
» Return the location with the highest matching score. For more information about the scoring
process please refer to the epitweetr vignette
This algorithm has mainly been developed in Spark.

A prerequisite to this function is that the search_loop must already have stored collected tweets in

the search folder and that the tasks download_dependencies, update_geonames and update_languages
have successfully been run. Normally this function is not called directly by the user but from the
detect_loop function.

Value

The list of tasks updated with produced messages

See Also

download_dependencies
update_geonames
update_languages
detect_loop
aggregate_tweets

get_tasks

Examples

if (FALSE){
library(epitweetr)
setting up the data folder
message('Please choose the epitweetr data directory')
setup_config(file.choose())

geolocating last tweets
tasks <- geotag_tweets()

get_aggregates Getting already aggregated time series produced by detect_loop

Description

Returns the required aggregated dataset for the selected period and topics defined by the filter.

Usage

get_aggregates(dataset = "country_counts”, cache = TRUE, filter = list())

get_aggregates 15

Arguments
dataset A character(1) vector with the name of the series to request, it must be one of
’country_counts’, ’geolocated’ or 'topwords’, default: ’country_counts’
cache Whether to use the cache for lookup and storing the returned dataframe, default:
TRUE
filter A named list defining the filter to apply on the requested series, default: list()
Details

This function will look in the ’series’ folder, which contains Rds files per weekday and type of
series. It will parse the names of file and folders to limit the files to be read. Then it will apply the
filters on each dataset for finally joining the matching results in a single dataframe. If no filter is
provided all data series are returned, which can end up with millions of rows depending on the time
series. To limit by period, the filter list must have an element "period’ containing a date vector or
list with two dates representing the start and end of the request.

To limit by topic, the filter list must have an element ’topic’ containing a non empty character vector
or list with the names of the topics to return.

The available time series are:

* "country_counts" counting tweets and retweets by posted date, hour and country

* "geolocated" counting tweets and retweets by posted date and the smallest possible geolocated
unit (city, adminitrative level or country)

* "topwords" counting tweets and retweets by posted date, country and the most popular words,
(this excludes words used in the topic search)

The returned dataset can be cached for further calls if requested. Only one dataset per series is
cached.

Value

A dataframe containing the requested series for the requested period

See Also

detect_loop geotag_tweets

Examples

if (FALSE){
message('Please choose the epitweetr data directory')
setup_config(file.choose())
Getting all country tweets between 2020-jan-10 and 2020-jan-31 for all topics
df <- get_aggregates(
dataset = "country_counts”,
filter = list(period = c("2020-01-10", "2020-01-31"))
)

Getting all country tweets for the topic dengue

16 get_alerts

df <- get_aggregates(dataset = "country_counts”, filter = list(topic = "dengue"))

Getting all country tweets between 2020-jan-10 and 2020-jan-31 for the topic dengue
df <- get_aggregates(

dataset = "country_counts”,

filter = list(topic = "dengue”, period = c("2020-01-10", "2020-01-31"))

)
3
get_alerts Getting signals produced by the task generate_alerts of
detect_loop
Description

Returns a dataframe of signals produced by the detect_loop, which are stored on the signal folder.

Usage

get_alerts(
topic = character(),
countries = numeric(),
from = "1900-01-01",
until = "2100-01-01"

)
Arguments
topic Character vector. When it is not empty it will limit the returned signals to the
provided topics, default: character()
countries Character vector containing the names of countries or regions or a numeric vec-
tor containing the indexes of countries as displayed at the shiny App to filter the
signals to return., default: numeric()
from Date defining the beginning of the period of signals to return, default: >1900-01-
or
until Date defining the end of the period of signals to return, default: *2100-01-01°
Details

For more details see the package vignette.

Value

a dataframe containing the calculated alerts for the period. If no alerts are found then NULL is
returned

get_tasks 17

See Also

generate_alerts

detect_loop

Examples

if (FALSE){
library(epitweetr)
setting up the data folder
message('Please choose the epitweetr data directory')
setup_config(file.choose())

Getting signals produced for last 30 days for a particular country
get_alerts(

countries = c("Chile”, "Australia”, "France"),

from = as.Date(Sys.time())-30,

until = as.Date(Sys.time())
)

get_tasks Get the detect_loop rask status

Description

Reads the status of the detect_loop tasks and updates it with changes requested by the Shiny app

Usage

get_tasks(statuses = list())

Arguments

statuses Character vector for limiting the status of the returned tasks, default: list()

Details

After reading the tasks.json file and parsing it with jsonlite, this function will update the necessary
fields in the tasks for executing and monitoring them.

Value

A named list containing all necessary information to run and monitor the detect loop tasks.

18 get_todays_sample_tweets

See Also

download_dependencies
update_geonames
update_languages
detect_loop
geotag_tweets
aggregate_tweets

generate_alerts

Examples

if (FALSE){
#getting tasks statuses
library(epitweetr)
message('Please choose the epitweetr data directory')
setup_config(file.choose())
tasks <- get_tasks()

get_todays_sample_tweets
Get a sample of latest tweet geolocations

Description

Get a sample of today’s tweets for evaluation of geolocation threshold

Usage

get_todays_sample_tweets(limit = 1000, text_col = "text”, lang_col = "lang")

Arguments
limit Size of the sample, default: 100
text_col Name of the tweet field to geolocate it should be one of the following ("text",
"linked_text", "user_description", "user_location", "place_full_name", "linked_place_full_name"),
default: ’text’
lang_col Name of the tweet variable containing the language to evaluate. It should be one
of the following ("lang", "linked_lang", NA), default: "lang"
Details

This function will take a sample of tweets collected on the current date for testing the geolocation
algorithm and giving the user the possibility to evaluate the optimal score.

In order for this function to work the search loop will have had to run on the current day and
the tasks download_dependencies, update_geonames and update_languages will have had to
successfully been run.

save_config 19

Value

Dataframe containing the sampled tweets and the geolocation metrics

See Also

download_dependencies
update_geonames
update_languages

geotag_tweets

Examples

if (FALSE){
library(epitweetr)
setting up the data folder
message('Please choose the epitweetr data directory')
setup_config(file.choose())

geolocating today's tweets
show(get_todays_sample_tweets())

save_config Save the configuration changes

Description
Permanently saves configuration changes to the data folder (excluding Twitter credentials, but not
SMTP credentials)

Usage

save_config(data_dir = conf$data_dir, properties = TRUE, topics = TRUE)

Arguments
data_dir Path to a directory to save configuration settings, Default: conf$data_dir
properties Whether to save the general properties to the properties.json file, default: TRUE
topics Whether to save topic download plans to the topics.json file, default: TRUE
Details

Permanently saves configuration changes to the data folder (excluding Twitter credentials, but not
SMTP credentials) to save Twitter credentials please use set_twitter_app_auth

20 search_loop

Value

Nothing

See Also

setup_config set_twitter_app_auth

Examples

if (FALSE){
library(epitweetr)
#load configuration
message('Please choose the epitweetr data directory')
setup_config(file.choose())
#make some changes
#conf$collect_span = 90
#saving changes
save_config()

search_loop Runs the search loop

Description

Infinite loop ensuring the permanent collection of tweets

Usage

search_loop(data_dir = NA)

Arguments
data_dir Path to the ’data directory’ containing application settings, models and collected
tweets. If not provided the system will try to reuse the existing one from last
session call of setup_config or use the EPI_HOME environment variable, De-
fault: NA
Details

The detect loop is a pure R function designed for downloading tweets from the Twitter search API.
It can handle several topics ensuring that all of them will be downloaded fairly using a round-robin
philosophy and respecting Twitter API rate-limits.

The progress of this task is reported on the "topics.json’ file which is read or created by this function.
This function will try to collect tweets respecting a ’collect_span’ window in minutes, which is
defined on the Shiny app and defaults to 60 minutes.

To see more details about the collection algorithm please see epitweetr vignette.

In order to work, this task needs Twitter credentials, which can be set on the Shiny app or using
set_twitter_app_auth

setup_config 21

Value

Nothing

See Also

set_twitter_app_auth

Examples

if (FALSE){
#Running the search loop
library(epitweetr)
message('Please choose the epitweetr data directory')
search_loop(file.choose())

setup_config Load epitweetr application settings

Description

Load epitweetr application settings from the designated data directory

Usage

setup_config(

data_dir = if (exists("data_dir"”, where = conf)) conf$data_dir else if
(Sys.getenv("EPI_HOME") != "") Sys.getenv("EPI_HOME") else file.path(getwd(),
"epitweetr"”),

ignore_keyring = FALSE,

ignore_properties = FALSE,

ignore_topics = FALSE,

save_first = list()

Arguments

data_dir Path to the directory containing the application settings (it must exist). If not
provided it takes the value of the latest call to setup_config in the current ses-
sion, or the value of the EPI_HOME environment variable or epitweetr sub-
directory in the working directory, default: if (exists("data_dir", where = conf))
conf$data_dir else if (Sys.getenv("EPI_HOME") |="") Sys.getenv("EPI_HOME")
else file.path(getwd(), "epitweetr")

ignore_keyring Whether to skip loading settings from the keyring (Twitter and SMTP creden-
tials), default: FALSE

ignore_properties
Whether to skip loading settings managed by the Shiny app in properties.json
file, Default: FALSE

22 setup_config

ignore_topics Whether to skip loading settings defined in the topics.xIsx file and download
plans from topics.json file, default: FALSE

save_first Whether to save current settings before loading new ones from disk, default:
list()

Details

epitweetr relies on settings and data stored in a system folder, so before loading the dashboard,
collecting tweets or detecting alerts the user has to designate this folder. When a user wants to use
epitweetr from the R console they will need to call this function for initialisation. The ’data_folder’
can also be given as a parameter for program launch functions epitweetr_app, search_loop or
detect_loop, which will internally call this function.

This call will fill (or refresh) a package scoped environment ’conf’ that will store the settings.
Settings stored in conf are:
* General properties of the Shiny app (stored in properties.json)

* Download plans from the Twitter collection process (stored in topics.json merged with data
from the topics.xlsx file

* Credentials for Twitter API and SMTP stored in the defined keyring
When calling this function and the keyring is locked, a password will be prompted to unlock the

keyring. This behaviour can be changed by setting the enviroment variable *ecdc_wtitter_tool_kr_password’
with the password.

Changes made to conf can be stored permanently (except for ’data_dir’) using:

* save_config, or

* set_twitter_app_auth

Value

Nothing

See Also

save_config set_twitter_app_auth epitweetr_app search_loop detect_loop

Examples

if (FALSE){
library(epitweetr)
#loading system settings
message('Please choose the epitweetr data directory')
setup_config(file.choose())

set_twitter_app_auth 23

set_twitter_app_auth Save Twitter App credentials

Description

Update Twitter authentication tokens in a configuration object

Usage

set_twitter_app_auth(

app,

access_token,
access_token_secret,
api_key,

api_secret

Arguments

app Application name

access_token Access token as provided by Twitter
access_token_secret
Access token secret as provided by Twitter

api_key API key as provided by Twitter
api_secret API secret as provided by Twitter
Details

Update Twitter authentication tokens in configuration object

Value

Nothing

See Also

save_config

Examples

if(FALSE){
#Setting the configuration values
set_twitter_app_auth(
app = "my super app”,
access_token = "123456",
access_token_secret = "123456",
api_key = "123456",

24

trend_line

api_secret = "123456"

)

trend_line

Plot the trendline report of epitweetr dashboard

Description

Generates a trendline chart of number of tweets by region, for one topic, including alerts using the
reweighted version of the EARS algorithm

Usage

trend_line(
topic,

countries = c(1),

date_type = "created_date”,
date_min = "1900-01-01",
date_max = "2100-01-01",

with_retweets
location_type
alpha = 0.025
alpha_outlier
k_decay = 4,

no_historic =

bonferroni_correction

= FALSE,
= "tweet",

’

= 0.05,

7,

FALSE,

same_weekday_baseline = FALSE

Arguments

topic

countries

date_type

date_min
date_max

with_retweets

location_type

alpha

Character(1) containing the topic to use for the report

Character vector containing the name of the countries and regions to plot or their
respective indexes on the Shiny app select, default: c(1)

Character vector specifying the time granularity of the report either ’created_weeknum’
or 'created_date’, default: ’created_date’

Date indicating start of the reporting period, default: "1900-01-01"
Date indicating end of the reporting period, default: "2100-01-01"

Logical value indicating whether to include retweets in the time series, default:
FALSE

Character(1) vector indicating the location type. Possible values ’tweet’, "user’
or 'both’, default: ’tweet’

Numeric(1) value indicating the alert detection confidence, default: 0.025

trend_line 25

alpha_outlier Numeric(1) value indicating the outliers detection confidence for downweight-
ing, default: 0.05

k_decay Strength of outliers downweighting, default: 4

no_historic Number of observations to build the baseline for signal detection, default: 7

bonferroni_correction

Logical value indicating whether to apply the Bonferroni correction for signal
detection, default: FALSE

same_weekday_baseline

Logical value indicating whether to use same day of weeks for building the
baseline or consecutive days, default: FALSE

Details

Produces a multi-region line chart for a particular topic of number of tweets collected based on the
provided parameters. Alerts will be calculated using a modified version of the EARS algorithm that
applies a Farrington inspired downweighting of previous outliers.

Days in this function are considered as contiguous blocks of 24 hours starting for the previous hour
of the last collected tweet.

This function requires search_loop and detect_loop to have already run successfully to show
results.

Value

A named list containing two elements: ’chart’ with the ggplot2 figure and ’data’ containing the
dataframe that was used to build the chart.

See Also

create_map create_topwords generate_alerts aggregate_tweets geotag_tweets detect_loop
search_loop

Examples

if (FALSE){
message('Please choose the epitweetr data directory')
setup_config(file.choose())
#Getting trendline for dengue for South America for the last 30 days
trend_line(
topic = "dengue”,
countries = "South America”,
date_min = as.Date(Sys.time())-30,
date_max=as.Date(Sys.time())

26 update_geonames

update_geonames Updates the local copy of the GeoNames database

Description

Downloading and indexing a fresh version of the GeoNames database from the provided URL

Usage

update_geonames(tasks)

Arguments

tasks Tasks object for reporting progress and error messages, default: get_tasks()

Details

Run a one shot task to download and index a local copy of the GeoNames database. The GeoNames
geographical database covers all countries and contains over eleven million place names that are
available; Creative Commons Attribution 4.0 License.

The URL to download the database from is set on the configuration tab of the Shiny app, in case it
changes.

The indexing is developed in Spark and Lucene

A prerequisite to this function is that the search_loop must already have stored collected tweets in
the search folder and that the task download_dependencies has been successfully run.

Normally this function is not called directly by the user but from the detect_loop function.

Value

The list of tasks updated with produced messages

See Also

download_dependencies
detect_loop
get_tasks

Examples

if (FALSE){
library(epitweetr)
setting up the data folder
message('Please choose the epitweetr data directory')
setup_config(file.choose())

geolocating last tweets
tasks <- update_geonames()

http://www.geonames.org/

update_languages 27

update_languages Updates local copies of languages

Description

Downloading and indexing a fresh version of language models tagged for update on the Shiny app
configuration tab

Usage

update_languages(tasks)

Arguments

tasks Tasks object for reporting progress and error messages, default: get_tasks()

Details

Run a one shot task to download and index a local fasttext pretrained models. A fasttext model is a
collection of vectors for a language automatically produced scrolling a big corpus of text that can
be used to capture the semantic of a word.

The URL to download the vectors from are set on the configuration tab of the Shiny app.

This task will also update SVM models to predict whether a word is a location that will be used in
the geolocation process.

The indexing is developed in SPARK and Lucene.

A prerequisite to this function is that the search_loop must already have stored collected tweets in
the search folder and that the tasks download_dependencies and update_geonames has been run
successfully.

Normally this function is not called directly by the user but from the detect_loop function.

Value

The list of tasks updated with produced messages

See Also

download_dependencies
update_geonames
detect_loop

get_tasks

https://fasttext.cc/docs/en/crawl-vectors.html

28 update_languages

Examples

if (FALSE){
library(epitweetr)
setting up the data folder
message('Please choose the epitweetr data directory')
setup_config(file.choose())

geolocating last tweets
tasks <- update_languages()

Index

aggregate_tweets, 2,5,7, 8, 13, 14, 18, 25

check_all, 4
coordinates, 5
create_map, 4, 7, 25
create_topwords, 5, 6, 25

detect_loop, 3,5,7,7,8, 9, 12-18, 22, 25-27
download_dependencies, 8,9, 14, 18, 19, 26,
27

ears_t_reweighted, 10
epitweetr_app, 11, 22

fortify, 5

generate_alerts, 3,8, 12, 16-18, 25

geom_point, 5

geom_polygon, 5

geotag_tweets, 2, 3,5,7,8,13,13, 15, 18,
19,25

get_aggregates, 14

get_alerts, 16

get_tasks, 8, 9, 14,17, 26, 27

get_todays_sample_tweets, 18

is.projected, 5

save_config, 19, 22, 23
search_loop, 3, 5, 7, 12, 14, 20, 22, 25-27
set_twitter_app_auth, 19-22, 23
setup_config, 8, 11, 20, 21
spTransform, 5

trend_line, 5, 7,24

update_geonames, 8, 14, 18, 19, 26, 27
update_languages, 8, 13, 14, 18, 19,27

29

	aggregate_tweets
	check_all
	create_map
	create_topwords
	detect_loop
	download_dependencies
	ears_t_reweighted
	epitweetr_app
	generate_alerts
	geotag_tweets
	get_aggregates
	get_alerts
	get_tasks
	get_todays_sample_tweets
	save_config
	search_loop
	setup_config
	set_twitter_app_auth
	trend_line
	update_geonames
	update_languages
	Index

