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ABSTRACT 

Eight tools relevant to risk ranking of biological hazards in food were identified and assessed using two case 

studies. Differences in their performance were observed, related to the risk metrics, data requirements, ranking 

approach, model type, model variables and data integration. Quantitative stochastic models are the most reliable 

for risk ranking. However, this approach needs good characterisation of input parameters. The use of 

deterministic models that ignore variability may result in risk ranking errors. The ordinal scoring approaches in 

semi-quantitative models provide ranking with more errors than the deterministic approaches. FDA (Food and 

Drug Administration)-iRISK was identified as the most appropriate tool for risk ranking of microbiological 

hazards. The Burden of Communicable Diseases in Europe (BCoDE) toolkit can be used in combination with the 

outputs from FDA-iRISK or as a top-down tool to rank pathogens. Uncertainty needs to be addressed and 

communicated to decision makers and stakeholders as one of the outcomes of the risk ranking process. 

Uncertainty and variability can be represented by means of probability distributions. Techniques such as the 

NUSAP (numeral, unit, spread, assessment and pedigree) approach can also be used to prioritise factors for 

sensitivity and scenario analysis or stochastic modelling. Quantitative risk ranking models are preferred over 

semi-quantitative models. When data and time constraints do not allow quantitative risk ranking, semi-

quantitative models could be used, but the limitations of these approaches linked to the selection and integration 

of the ordinal scores should be made explicit. Decision trees should be used only to show how decisions are 

made about classifying food–pathogen combinations into broad categories. BCoDE and FDA-iRISK, in 

combination with a network of available predictive microbiology tools, databases and information sources, can 

form a risk ranking toolbox and be applied based on a “fit for purpose” approach supporting timely and 

transparent risk ranking. 
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SUMMARY 

The European Food Safety Authority (EFSA) asked the Panel on Biological Hazards (BIOHAZ) (i) to 

evaluate the performance and data requirements of the available risk ranking tools; (ii) to investigate 

methodologies for introducing uncertainty and variability in the risk ranking models; and (iii) to 

design and develop a risk ranking toolbox for the EFSA BIOHAZ Panel. 

The BIOHAZ Panel identified eight tools relevant to risk ranking applications of biological hazards in 

food: decision trees; the United States Food and Drug Administration (US-FDA) risk ranking tool: the 

pathogen–produce pair attribution risk ranking tool (P3ARRT); the EFSA food of non-animal origin 

risk ranking tool (EFoNAO-RRT); Risk Ranger; microHibro; swift quantitative microbiological risk 

assessment (sQMRA); FDA-iRISK; and the European Centre for Disease Prevention and Control 

(ECDC) Burden of Communicable Diseases in Europe (BCoDE) toolkit. 

A detailed description of the tools, based on the conceptual risk ranking framework developed by the 

BIOHAZ Panel and their use in two risk ranking case studies, showed clear differences among them 

related to the risk metrics, the ranking approach, the model type, the model variables and data 

integration method. In addition, risk ranking tools have different data requirements, and empirical data 

requirements increase moving from qualitative to quantitative risk ranking approaches. When applied 

to the case studies of single pathogen–multiple foods (Listeria monocytogenes in ready-to-eat (RTE) 

foods) and multiple pathogens in a single food (leafy greens), the selection of the risk metric was 

found to significantly affect the risk ranking because the metrics measure different things, for example 

probability of illness versus public health burden (disability-adjusted life years (DALYs)). It should be 

noted that the performance of the risk ranking tools selected was evaluated from a 

statistical/theoretical perspective. Their implementation in practice may be constrained by limitations 

in data, time and resources. 

Fully quantitative stochastic models are the most reliable for risk ranking. However, this approach 

needs a good characterisation of the input parameters. The evaluation of general approaches in risk 

ranking showed that the use of deterministic models that ignore variability may result in risk ranking 

errors, which may be greater for the food–pathogen combinations with the highest risk. When using 

semi-quantitative models with ordinal scoring, the food–pathogen combinations are classified into 

broad sets of categories with little discrimination. There are considerable differences in risk ranking 

compared with a quantitative stochastic model. The ordinal scoring approaches provide ranking with 

more errors than the deterministic approaches. 

Among the quantitative tools that use a bottom-up approach for risk ranking, FDA-iRISK has been 

identified as the most appropriate for the needs of the EFSA BIOHAZ Panel. FDA-iRISK is a 

technically sound, quantitative tool providing meaningful risk metrics, allowing effective data 

management and scenario analysis. The evaluation of FDA-iRISK identified some limitations, 

including the omission of a maximum population density and the lack of uncertainty assessment. 

However, a new version of FDA-iRISK addressing most, if not all, of these issues will be available in 

the beginning of 2015. In addition, the BIOHAZ Panel concluded that BCoDE is a flexible, detailed 

and user-friendly DALY calculator that can be used in combination with the outputs from FDA-iRISK 

for a more effective calculation of DALYs or as a top-down tool based on epidemiological data to 

rank pathogens. 

The BIOHAZ Panel evaluated methodologies to account for uncertainty in the risk assessment 

process. Uncertainty has been defined as “all types of limitations in knowledge, at the time it is 

collected”. Uncertainty may arise from several factors in the risk ranking process, and includes 

technical (inexactness), methodological (unreliability), epistemological (ignorance) and societal 

(limited social robustness) aspects. Uncertainty in risk ranking needs to be carefully addressed and 

communicated to decision makers and stakeholders as one of the outcomes of the risk ranking process. 
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Uncertainty and variability can be represented in risk ranking by means of probability distributions, 

for example using two-dimensional Monte Carlo simulations. However, probabilistic representation is 

difficult when sufficient data are not available for statistical analysis. Expert elicitation procedures to 

incorporate diffuse information into the corresponding probability distributions may be adopted. 

The NUSAP (numeral, unit, spread, assessment and pedigree) system aims to characterise and 

prioritise sources of uncertainty in a risk ranking model, and was used as an example of how to deal 

with uncertainty when using a risk ranking tool. NUSAP is a generic method that can be applied to all 

types of models and provides standardised scales for description of uncertainty in various dimensions. 

NUSAP uses expert judgement to evaluate the impact of uncertainty in individual model factors on the 

outcome of the assessment, leading to a prioritisation of factors for further work, for example 

sensitivity and scenario analysis, or stochastic modelling. 

Quantitative risk ranking models respecting the rules of probability calculation and correctly 

describing the main biological phenomena that determine the risk are preferred over semi-quantitative 

models with ordinal scoring. When data and time constraints do not allow quantitative risk ranking, 

semi-quantitative models could be used. In this case, the limitations of these approaches linked to the 

selection and integration of the ordinal scores, as identified in this opinion, should be made explicit. 

Decision trees should be used only as a tool for showing how decisions about classifying pathogens–

food combinations into broad categories are made (e.g. inclusion/exclusion; high/low). The BIOHAZ 

Panel concluded that BCoDE and FDA-iRISK, in combination with a network of available predictive 

microbiology tools, databases and information sources can form a risk ranking toolbox and be applied 

based on a “fit for purpose” approach supporting the timely and transparent development of risk 

ranking. 

The BIOHAZ Panel recommended that the risk metrics used in risk ranking should have a meaningful 

biological or epidemiological interpretation and have to be agreed on by the risk managers before 

starting the risk ranking exercise. A framework encompassing uncertainty typology and evaluation 

(e.g. the NUSAP approach) should preferably be part of each risk ranking process to formalise 

discussions on uncertainty, considering practicality and feasibility aspects. In addition, a strategy 

should be developed to progressively adopt the proposed methods in future risk ranking opinions 

developed by the Panel.  
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BACKGROUND 

The setting of priorities plays a crucial role for the decision-making process in food safety 

management. In the face of finite resources, and a very large number of conflicting demands upon 

those resources, the establishment of priorities is a necessity. 

Risk ranking is a technique that can be used to identify, and thereby prioritise, the most significant 

risks applying to a given situation. This methodology is also part of the overall EFSA Science strategy 

2012–2016, and different complementary projects are running on this topic, involving different EFSA 

Units such as the Biological Hazards and Contaminants Unit (BIOCONTAM) and the Scientific 

Committee and Emerging Risks Unit. 

The BIOHAZ Panel has already adopted scientific opinions where risk ranking was requested in the 

terms of reference, while the number of mandates that require a risk ranking exercise in the context of 

risk assessment is expected to increase in the future. 

An opinion on the development of a conceptual risk ranking framework on biological hazards has 

been recently adopted by the BIOHAZ Panel (EFSA Panel on Biological Hazards (BIOHAZ), 2012b). 

In this opinion the risk ranking exercises relating to biological hazards undertaken in fourteen opinions 

that were produced by the BIOHAZ Panel were reviewed. It was concluded that there is no single and 

universally applicable standardised methodology for risk ranking. A conceptual risk ranking 

framework with nine separate stages was proposed to allow the adoption of the appropriate risk 

ranking methodology at each stage. Furthermore, nine risk ranking tools developed by other 

institutions worldwide were described, although none of these could be recommended as the single 

risk ranking tool for the BIOHAZ Panel. 

In the adopted opinion it is also recommended that the development of a risk ranking toolbox based on 

the proposed framework should be undertaken, since such a toolbox would support the construction of 

consistent and transparent risk ranking models, and might assist the BIOHAZ Panel in the provision of 

timely answers to new mandates and food safety emergencies. The toolbox should be based on 

different modules that correspond to the nine stages of the framework with each module providing 

different option on risk metrics, ranking approaches, model types, variables and data integration 

methods. The above structure will allow the design and construction of risk ranking models targeted to 

the purpose of each mandate. At a first instance this toolbox will be of use for the BIOHAZ Panel, but 

the intention is that it will serve also for Members States, National food safety authorities and other 

food safety-related stakeholders. 

In line with the above mentioned EFSA Science Strategy and as a complement to the BIOHAZ Panel’s 

work, the Scientific Committee of EFSA launched a procurement call to perform a critical review of 

methodology and applications for risk ranking and benefit ranking for prioritisation of food and feed 

related issues, on the basis of the size of anticipated health impact. Although the latter call would not 

be limited to biological hazards, the results of this project is expected to provide additional insights on 

risk ranking and support the development of a risk ranking toolbox for the BIOHAZ Panel. 

The overall objective of this self-task mandate in line with the European Commission priorities, is to 

capitalise on and advance the previous experience of the BIOHAZ Panel as well as the scientific and 

technical achievements for risk ranking through the development of a bespoke risk ranking toolbox. 

Developing such a tool and getting to the point of being able to apply it requires time and expertise, 

hence this proposal which will facilitate the provision of dedicated development time and resources for 

this important initiative. 
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TERMS OF REFERENCE 

 To evaluate the performance and the data requirements of the available risk ranking tools. 

 To investigate methodologies for introducing uncertainty and variability in the risk ranking 

models. 

 To design and develop a risk ranking toolbox for the EFSA BIOHAZ Panel. 
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ASSESSMENT 

1. Introduction 

In the remit of the Panel on Biological Hazards (BIOHAZ), risk ranking is a coherent, comprehensive, 

transparent and evidence-based scientific process to prioritise and evaluate risks associated with 

biological hazards in foods. This aims to support decision makers in allocating resources to prevent 

and control health risks. Risk has been defined as “a function of the probability of an adverse health 

effect and the severity of that effect, consequential to a hazard(s) in food” (FAO/WHO, 2001). 

In a previous opinion about the risk ranking framework, the BIOHAZ Panel proposed a conceptual 

risk ranking framework (Figure 1) comprising nine conceptual stages involved in risk ranking, from 

defining what is to be ranked to the presentation of the results of risk ranking (EFSA Panel on 

Biological Hazards (BIOHAZ), 2012b). 

 

* “Risk metrics” is the expression of the risk (DALY – disability-adjusted life years, QALY – quality-adjusted life years, 

incidence, etc.). 

** Model variables” are the indicators used for risk ranking (prevalence, epidemiological data). 

*** “Data integration” is the combination of model inputs and formulas to produce model outputs. 

RA: Risk assessment; RM: Risk management. 

Figure 1:  The proposed conceptual risk ranking framework for the BIOHAZ Panel  

1. Definition of what to be ranked 

2. Selection of risk metrics* 

3. Risk ranking approach 

        5. Model variables ** – 

INPUT 

   6. Collection and evaluation of data for model variables 

4. Choice of the model type 

7. Restructure of model 

based on data 
availability 

 

Scope definition 

 

 

Communication 

between RA and RM 

     9. Presentation of the results 

           8. Data integration*** – 

OUTPUT 
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This framework shows that risk managers and risk assessors should be encouraged to liaise with each 

other regarding the aim of the risk ranking process and the communication of the results. It also 

provides the ability to adapt the appropriate risk ranking methodology by selecting different options at 

each stage. The appropriate option should be selected based on the aim of the risk ranking and 

available data. It was recommended that this conceptual risk ranking framework should be used in 

future risk ranking exercises in order to increase consistency and transparency. Furthermore, the 

proposed framework should represent the basis for the development of a risk ranking toolbox (i.e. a 

group of tools that could be used for risk ranking) since such a toolbox would support the construction 

of consistent and transparent risk ranking models. 

In the previous opinion, nine risk ranking tools developed by institutions worldwide were identified 

and reviewed. They differed in their degree of complexity, level of quantification and approach to 

model construction. 

The present opinion is a follow-up to the previous one and its scope is to carry out a comparative 

analysis of the performance of a selection of risk ranking tools on biological hazards and highlight 

their strengths and weaknesses. This exercise would allow the detection of the possible sources of 

uncertainty of different tools. In the timeframe of this opinion, the ultimate scope is to design a 

toolbox based on the risk ranking available tools with proper adjustments that cover the needs of the 

BIOHAZ Panel. 

In order to address the terms of reference, the available risk ranking tools were identified and 

described in detail based on the conceptual risk ranking framework. The tools were further evaluated 

using two case studies: a single pathogen–multiple food setting (Listeria monocytogenes in ready-to-

eat (RTE) foods) and multiple pathogens in a single food (Shiga toxin-producing Escherichia coli 

(STEC),4 Salmonella spp., L. monocytogenes, Campylobacter spp., Norovirus, Cryptosporidium spp. 

and Giardia spp.) in leafy greens. The evaluation of the tools was based on their comparison with a 

fully quantitative stochastic risk ranking approach used in the reference model. In a next step, the 

general approaches in risk ranking, including a fully quantitative stochastic approach, a deterministic 

approach and a semi-quantitative approach with two scoring systems, were evaluated for various 

food–pathogen combinations using a common database. The incorporation of uncertainty and 

variability in risk ranking was explored. The use of the numeral, unit, spread, assessment and pedigree 

(NUSAP) approach for the identification of the important uncertainty sources was described and 

applied in a risk ranking case study. The methodologies of quantifying uncertainty in risk ranking 

models were also explored. The information gathered through these exercises was used to propose the 

tools to be included in a risk ranking toolbox. In addition, a prototype of a new risk ranking tool that 

covers the gaps of the current version of the available tools was developed. The use of these tools in a 

“fit for purpose” approach was presented. Finally, a supporting network of predictive microbiology 

tools, databases and information sources was presented as part of the risk ranking toolbox for the 

EFSA BIOHAZ Panel. 

2. Description of selected risk ranking tools 

From the tools that were evaluated in the previous opinion, some were considered to have too narrow a 

focus and therefore were not included in this assessment. In addition, some other tools have been 

recently developed, so in the end the following eight tools that can be used to rank the risk of 

microbiological hazards in foods were identified: 

 decision trees; 

 United States Food and Drug Administration (US-FDA) risk ranking tool: the pathogen–

produce pair attribution risk ranking tool (P3ARRT); 

 EFSA food of non-animal origin risk ranking tool (EFoNAO-RRT); 

                                                      
4  Shiga toxin-producing Escherichia coli (STEC) is also known as verotoxigenic E. coli, verocytotoxigenic E. coli, 

verotoxin producing E. coli and verocytotoxin-producing Escherichia coli (VTEC). 



Development of a risk ranking toolbox for the EFSA BIOHAZ Panel 

 

EFSA Journal 2015;13(1):3939 11 

 Risk Ranger; 

 microHibro; 

 swift quantitative microbiological risk assessment (sQMRA); 

 FDA-iRISK; 

 European Centre for Disease Prevention and Control (ECDC) Burden of Communicable 

Diseases in Europe (BCoDE) toolkit. 

Some of these tools can be classified as conforming to a “bottom-up” approach, that is, the agent is 

followed through the food chain to produce a prediction of risk to human health relative to other 

agents and/or foods. Other tools follow a “top-down” approach, where the level of risk associated with 

specific foods, hazards or their combinations is based on information gathered from epidemiological 

systems such as disease reporting and outbreak databases, while other tools combine both approaches 

(EFSA Panel on Biological Hazards (BIOHAZ), 2012b). A detailed description of the available risk 

ranking tools based on the conceptual risk ranking framework of EFSA is presented in the following 

paragraphs. 

2.1. Decision trees 

2.1.1. General description 

Decision trees are simple tools that can be used for food safety risk assessment. The tool consists of a 

flow chart with alternative choices related to simple questions (typically with yes/no answers) 

allowing decisions to be taken, for example in a risk ranking. It is mainly based on qualitative inputs 

and it delivers a qualitative outcome. It is useful when the sources of information are qualitative or 

consist in poor quantitative data, providing very high versatility. The tool provides a qualitative 

indication of the risk associated with a food-borne hazard (categorised as, for example, high, medium 

or low). Owing to its simplicity, it can be adapted to the needs of the users. 

2.1.2. Risk metrics 

The metric associated with a decision tree in a “risk ranking”, which provides a qualitative, 

categorised response of the relative risk associated with a hazard based (at least to a major extent) on 

qualitative information. The ranking establishes typically terms such as “high”, “medium”, 

“moderate”, “low” and/or “negligible”. 

Decision trees allow a rapid comparison when there are many food-borne hazards to be considered 

and/or if there is a significant lack of quantitative information. 

Decision trees are simple to use, although “expert opinion” is often needed to use them when scientific 

information is lacking. 

2.1.3. Risk ranking approach 

A decision tree can follow either a “bottom-up” (or forward) or a “top-down” (or backward) 

approach to public health risk ranking, adhering roughly to the standard microbial risk assessment 

paradigm in the former, or following a public health-based risk ranking that reflects the illness at the 

point of consumption in the latter. 

2.1.4. Model type 

Decision trees use a qualitative method for risk ranking. The tool requires the user to select from 

qualitative statements to provide a descriptive or categorical answer concerning factors that will affect 

the food safety risk to a specific or generic population. 
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Decision trees should take uncertainty and variability into account. Since in a qualitative approach 

there is no specific way in which uncertainty and variability in any input parameter are retained and 

reflected in the final risk estimate, the overall assessment can be evaluated in narrative, imprecise, 

terms such as “much”, “little”, etc., or scored according to the available evidence as in the case of 

evidence-based medicine. Another option is to include a number of scenarios that reflect the 

uncertainty and variability. 

2.1.5. Model variables 

The decision tree allows the most appropriate variables (major factors) that should be considered in 

decision-making to be established. The adoption of explicit variables allows participants to make a 

series of incremental judgements, which together can be combined to form an overall picture of the 

issue. 

Typical input variables are (EFSA Panel on Biological Hazards (BIOHAZ), 2012a): 

 hazard characterisation/identification; 

 effect of process; 

 effect of post-processing control system (Figure 2). 

Variables can be selected according to the ranking needs. For most variables, scoring is based on 

categorical information as a response to simple questions which are relatively easy for the user to 

answer. 

2.1.6. Data integration 

As explained in the previous opinion, the data integration step combines information collected in the 

different stages of the risk ranking process (model inputs) to produce output results in the chosen risk 

metric (EFSA Panel on Biological Hazards (BIOHAZ), 2012b). Data integration in decision trees is 

based on a set of interconnected questions. Typically, little or no quantitative information is available. 

2.1.7. Presentation of the results 

The presentation of the results of a decision tree should be documented as fully as possible. This is 

particularly important as decision trees can present considerable variations and, in order to ensure 

transparency and reproducibility, the reasoning underlying the selection of different options must be 

explained in detail. 
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QPR: qualified presumption of risk. 

Figure 2:  Flow chart providing risk ranking of hazards which usually need to grow in food to cause 

illness (EFSA Panel on Biological Hazards (BIOHAZ), 2012a)   

2.2. US-FDA risk ranking tool: the pathogen–produce pair attribution risk ranking tool or 

P
3
ARRT 

2.2.1. General description 

The P3ARRT is a semi-quantitative risk ranking software tool for prioritising, ranking and selecting 

pathogen–produce combinations (Anderson et al., 2011b). High-ranking combinations are prioritised 

for more rigorous risk assessment modelling efforts. Ranking is based on criteria related to the 

pathogen, human health and production/processing. A total of 11 data categories are used as input to 

estimate nine criteria—some data categories are combined into a single criterion. Data describe the 

strength of epidemiological association, severity of disease, pathogen characteristics that affect disease 

risk and commodity characteristics that affect pathogen prevalence, behaviour and likelihood of 

exposure by the consuming public. A total risk score is calculated for each of the selected pathogen–

commodity pairs as the sum of the nine criteria scores multiplied by a corresponding criteria 

weighting. For the pathogen–commodity pairs included in the tool, a baseline ranking (default values) 

can be run and compared with ranking based on user-defined input. The user can define which criteria 

to include, the default bins for each data category, i.e. data limits for the four scoring bins (low, 

medium, high, very high) and the weight of each criterion. The tool is available for free download 
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(http://foodrisk.org/exclusives/rrt/) and is developed in Microsoft Access format, therefore this 

software is needed to run the tool. 

2.2.2. Risk metrics 

The P3ARRT calculates one type of risk metric, the total risk score, which is the basis of the ranking 

list. The score is the sum of each criterion multiplied by a weighting factor. The weighting factor is 

included if the user considers one or more of the individual criteria more important than others. For 

each of the nine criteria, an ordinal number weight can be assigned. In the baseline criterion, a weight 

from 1 to 4 is used, but a weighting scheme from 1 to 100 or any range can be used (Anderson et al., 

2011a). A criterion can be excluded from the ranking by entering a zero weight. Thus, the score can be 

evaluated by criteria category and, in addition, by changing weighting factors a sensitivity analysis is 

possible. 

2.2.3. Risk ranking approach 

The P3ARRT follows a combined “bottom up” and “top-down” approach to public health risk ranking 

without explicitly referring to it in the description of the tool. The bottom-up part roughly adheres to 

the standard microbial risk assessment paradigm by inclusion of criteria related to prevalence of 

contamination, growth potential/shelf life; consumption; relative infectivity/infectious dose; 

susceptible population (reflecting risk groups and more severe consequences). The top-down 

approach/criteria reflect the public health burden by inclusion of criteria related to strength of 

epidemiological link, reflecting the extent of reported illness; epidemiological/disease, reflecting the 

“true” extent of illness; hospitalisation and death rates, reflecting the public health burden. The 

rationale for using selected criteria and approach for ranking in the tool is not explicitly explained 

other than no tool was available and the purpose was to design a transparent, data-driven, 

customizable, semi-quantitative, comparative risk assessment tool used to select priority pairs for 

further risk assessment efforts (Anderson et al., 2011a). Potential limitations of using a combined 

approach are not discussed in the tool. Limitations may include that some criteria (or sub-criteria) are 

related or correlated which may bias the scores used for ranking. 

2.2.4. Model type 

The P3ARRT uses a semi-quantitative method for risk ranking, i.e. the quantitative data are divided 

into four categories, where each category is given a score, meaning that the final model outcome is 

presented on a semi-quantitative scale. The tool permits the user to refine the default bins for each of 

the four numerical scores associated with each criterion and to enter weights for each criterion. The 

Access software converts the quantitative data in the database tables into a category scored a value 

between 1 and 4 based on the defined bins. The criteria score is multiplied by the weighting factor and 

the total sum of the criteria included in the run is calculated by the software. The total sum score is the 

basis for ordering of the pathogen–commodity from high to low risk. 

2.2.5. Model variables 

The P3ARRT includes 11 input variables (nine criteria) related to the risk or public health burden of 

pre-selected pathogen–commodity pairs. A total of 55 pathogen–commodity pairs are included in the 

tool. Pathogen–commodity pairs were selected by searching reports of outbreaks associated with fresh 

produce from the Annual Listing of Foodborne Disease Outbreaks compiled by the US Centers for 

Disease Control and Prevention (CDC) from 1996 to 2006, the Foodborne Outbreak Database 

sponsored by the Center for Science in the Public Interest, issues of Morbidity and Mortality Weekly 

Report (MMWR) from 1996 to 2008, and the peer-reviewed literature and publicly accessible 

databases. Only data from outbreaks of confirmed aetiology that occurred in the United States are 

included. 

The input variables are (1) epidemiological link (number of outbreaks and total number of cases), 

(2) epidemiological multiplier (to account for unreported and undiagnosed cases), (3) hospitalisation 

(percentage of cases), (4) death (percentage of cases), (5) susceptible populations, (6) infectious 

http://foodrisk.org/exclusives/rrt/
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dose/relative infectivity, (7) contamination (Prevalence of contamination), (8) consumption (per cent 

of population consuming per day), and (9) shelf life and growth potential combined into one score. 

2.2.6. Data integration 

To generate the overall rank per pathogen–commodity pair, an algorithm that balances the score for 

each criterion with the weight of that criterion is used. The result is an overall numerical score for each 

pathogen–commodity pair that is produced by first multiplying each variable’s score by its weight and 

then adding each of these nine values: 

𝑅𝑎𝑛𝑘 𝑠𝑐𝑜𝑟𝑒 =  ∑ 𝑆𝑐𝑜𝑟𝑒𝑖  × 𝑊𝑒𝑖𝑔ℎ𝑡𝑖

9

𝑖=1

 

The algorithm is implemented in visual basic as a Microsoft Access database application, which can 

be run using Microsoft Access 2000, 2003 or 2007. 

2.2.7. Presentation of the results 

Tables in the database store raw data for each of the nine criteria and contain the parameter value at 

the commodity, pathogen or commodity–pathogen level. Other tables define the four bins (scored 1–4) 

for each of the nine criteria; these tables are linked to the raw data tables. The interface allows the user 

to reset the default bins for eight of the nine data categories (excluding the population susceptibility 

category and the growth potential category), as well as to determine appropriate weights for each of 

the nine data categories. When the user runs the application, ranking is performed based on user-

specified inputs. A risk ranking summary report is generated that provides the list of pathogen–

commodity pairs ordered by total score in descending order as well as a legend documenting the user 

inputs used to generate the list. 

2.3. EFSA food of non-animal origin risk ranking tool (EFoNAO-RRT)—(adapted from the 

US-FDA risk ranking tool, P
3
ARRT) 

2.3.1. General description 

EFoNAO-RRT was developed by the BIOHAZ Panel as a multi-criterion analysis model aimed at risk 

ranking combinations of food of non-animal origin commodities and specific pathogens (EFSA 

BIOHAZ Panel, 2013). It is a semi-quantitative tool that builds on the US-FDA P3ARRT. Limited data 

availability, the use of broad risk categories and the possibility of applying qualitative or highly 

uncertain data were the stated reasons for developing an approach close to the P3RRT model. The 

general modelling approach is a semi-quantitative risk ranking that takes into account variables such 

as the strength of association between the food commodity and the pathogen in question, the severity 

and extent of disease in humans and pathogen and commodity characteristics known to affect disease 

risk and/or probability of exposure. These variables are included in the model and used to define seven 

specific criteria that can be categorised as describing epidemiology and public health (criteria 1 to 3) 

as well as probability of exposure and risk (criteria 4 to 7). The model outputs of the tool are based on 

reported outbreaks associated with consumption of food of non-animal origin in the European Union 

(EU) Zoonoses Monitoring between 2007 and 2011. The model is implemented as a spreadsheet 

model in Microsoft Excel, which enables the user to modify data inputs and outputs. 

2.3.2. Risk metrics 

The EFoNAO-RRT calculates one type of risk metric, the total risk score. This score is the basis for 

ranking of pathogen–commodity pairs. For each criterion, available data were grouped into scoring 

categories, bins, which were defined and assigned a numerical, ordinal score. The total risk score is the 

sum of each criterion score multiplied by a weighting factor. Different weighting factors enable the 

user to consider one or more of the individual criteria more important than others. A criterion can be 

excluded from the ranking by entering a zero weight. Therefore, the score can be evaluated by criteria 
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category to investigate how robust the result is to different scenarios in terms of criteria included in the 

ranking or the weight put on the criteria. 

2.3.3. Risk ranking approach 

The EFoNAO-RRT follows a combined “bottom-up” and “top-down” approach to public health risk 

ranking. The bottom-up part roughly adheres to the standard microbial risk assessment paradigm by 

inclusion of the following criteria related to exposure and risk: prevalence of contamination, pathogen 

growth potential during shelf life; consumption; dose–response relationship. The top-down 

approach/criteria reflect the public health burden by inclusion of the following criteria: strength of 

epidemiological link, reflecting the extent of reported outbreaks; incidence of illness, reported cases 

corrected by a hazard-specific multiplier reflecting the “true” extent of illness; and burden of disease, 

reflecting the public health burden per 1 000 cases due to risk groups and more severe consequences. 

2.3.4. Model type 

The EFoNAO-RRT uses a semi-quantitative method for risk ranking. For each criterion, available 

quantitative data are grouped into defined scoring categories and assigned a numerical, ordinal score. 

The total sum of weighted criteria included in the run is calculated in the Excel spreadsheet. The total 

final risk score is the basis for ranking of all combinations. It is possible for the user to modify input 

data and how output is calculated in the spreadsheet model. For instance, definitions of scoring 

categories (bins) as well as the weights for each criterion can be modified. The total sum score is the 

basis for ordering of the pathogen–commodity from high to low risk. 

2.3.5. Model variables 

The EFoNAO-RRT includes input data for 10 variables used to categorise the seven criteria related to 

health consequences or risk of the pre-selected pathogen commodity pairs. A total of 32 pathogen–

commodity pairs are included in the tool. The pathogen–commodity pairs were selected by identifying 

outbreaks associated with fresh produce from the reported food-borne outbreaks in EU Zoonoses 

Monitoring between 2007 and 2011. Only data from outbreaks classified as moderate to very strong 

(according to the number of cases) and that occurred in Europe are included. The criteria are: 

(1) strength of associations between food and pathogen (number of reported outbreaks and cases), 

(2) incidence of illness (notified number of cases and disease multiplier for under-reporting from EU 

Salmonella multiplier or multipliers, anchored to EU Salmonella (Scallan et al., 2011)), (3) burden of 

disease (DALY5 per 1 000 cases based on data from the Netherlands (Havelaar et al., 2012)), 

(4) dose–response relationship (only three scoring levels), (5) prevalence of contamination, 

(6) consumption (percentage of consumers consuming, at least once, any specific food belonging to 

each EFoNAO category during the study period), and (7) pathogen growth potential during shelf 

life (combined score from growth potential and shelf life). 

2.3.6. Data integration 

The overall rank per pathogen–commodity pair incorporates all seven criteria scores and is estimated 

via an algorithm that balances the score for each criterion with the weight of that criterion. The result 

is an overall numerical score for each pathogen–commodity pair that is produced by first multiplying 

each variable’s score by its weight and then adding each of these seven values: 

𝑅𝑎𝑛𝑘 𝑠𝑐𝑜𝑟𝑒 =  ∑ 𝑆𝑐𝑜𝑟𝑒𝑖  × 𝑊𝑒𝑖𝑔ℎ𝑡𝑖

7

𝑖=1

 

The algorithm risk is implemented in Microsoft Excel. 

                                                      
5 The DALY is a health gap measure that extends the concept of potential years of life lost as a result of premature death to 

include equivalent years of “healthy” life lost in states of less than full health or, in more general terms, disability. One 

DALY is one lost year of healthy life (World Health Organization definition). The DALY methodology has been described 

by Murray and Lopez (1994a, b, 1996) in the Global Burden of Disease (GBD) project. 
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2.3.7. Presentation of the results 

For each combination of pathogen and commodity (rows), the score for each criterion as well as the 

total score are shown in columns in the spreadsheet. The separate columns allow the contribution of 

each criterion to be evaluated and ranking can be achieved by sorting based on the total score column. 

2.4. Risk Ranger 

2.4.1. General description 

Risk Ranger is a simple tool for food safety risk assessment developed by the Australian Food Safety 

Centre (Ross and Sumner, 2002). The tool is in Excel spreadsheet format and embodies established 

principles of food safety risk assessment, i.e. the combination of probability of exposure to a food-

borne hazard, the magnitude of hazard in a food when present and the probability and severity of 

outcomes that might arise from that level and frequency of exposure. The tool requires the user to 

select from qualitative statements and/or to provide quantitative data concerning factors that that will 

affect the food safety risk to a specific population, arising from a specific food product and specific 

hazard, during the steps from harvest to consumption. The spreadsheet converts the qualitative inputs 

into numerical values and combines them with the quantitative inputs in a series of mathematical and 

logical steps using standard spreadsheet functions. These calculations are used to generate indices of 

the public health risk. 

2.4.2. Risk metrics 

Three types of risk metrics are calculated in Risk Ranger. The first is the “probability of illness per 

consumer per day”, calculated as Pinf × Pexp, where Pinf is the probability of a disease-causing dose 

being present in a portion of the product of interest and Pexp is the probability of exposure to the 

product per person per day. This metric is not strictly a measure of risk, because it does not include the 

severity of the illness resulting from exposure to the hazard. The second metric is the “total predicted 

illnesses/annum in population of interest”, which does not differentiate severity either, but provides 

another measure that might be more readily understood than risk per day. The third metric is the “risk 

ranking”, which provides a more user-friendly and robust index of relative risk and is calculated 

based on the “comparative risk” estimate. The “comparative risk” in the population of interest is a 

measure of relative risk which includes the severity of the illness and is independent of the size of the 

population, but does consider the proportion of the population consuming. A “comparative risk” 

of 1 represents the situation in which every person in the population consumes the product of interest 

daily, and that each portion of the product contains a lethal dose of the hazard. The “risk ranking” 

value is scaled logarithmically between 0 and 100, where 0 represents no risk and 100 represents the 

opposite extreme, where every member of the population eats a meal that contains a lethal dose of the 

hazard every day. The “risk ranking” scale is set based on a probability of mild food-borne illness of 

less than or equal to one case per 10 billion people (greater than current global population) per 

100 years as a negligible risk. The “comparative risk” estimate that corresponds to this value is 

2.75 × 10 − 17 and the “risk ranking” corresponding to this level is equated to zero. Analogously, the 

upper limit of “risk ranking” at 100 corresponds to a “comparative risk” of 1. 

2.4.3. Risk ranking approach 

The Risk Ranger follows a “bottom-up” (or forward) approach to public health risk ranking, 

corresponding roughly to the standard microbial risk assessment paradigm. The risk ranking is based 

on factors that affect the food safety risk to a specific population, arising from a specific food product 

and specific hazard, during the steps from harvest to consumption. 

2.4.4. Model type 

Risk Ranger uses a semi-quantitative method for risk ranking. The tool requires the user to select 

from qualitative statements and/or to provide quantitative data concerning factors that that will affect 

the food safety risk to a specific population, arising from a specific food product and specific hazard, 
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during the steps from harvest to consumption. The spreadsheet converts the qualitative inputs into 

numerical values and combines them with the quantitative inputs in a series of mathematical and 

logical steps using standard spreadsheet functions. These calculations are used to generate indices of 

the public health risk. 

2.4.5. Model variables 

The Risk Ranger model includes 11 input variables related to the severity of the hazard, the likelihood 

of a disease causing dose of the hazard being present in a meal and probability of exposure to the 

hazard in a defined period of time. These variables are: (1) hazard severity, (2) susceptibility of the 

consumer, (3) frequency of consumption, (4) proportion of population consuming, (5) size of 

population of interest, (6) proportion of product contaminated, (7) effect of process, (8) potential 

for recontamination after processing, (9) effect of post-processing control system, (10) increase 

from level at processing required to reach an infectious or toxic dose for the average consumer, 

and (11) effect of preparation for meal. For most variables, scoring is based on ordinal weighting 

factors translated to simple questions which are relatively easy for the user to answer. 

2.4.6. Data integration 

The logic and equations leading to the risk estimates are detailed below. 

The “probability of illness per consumer per day” is calculated as Pinf × Pexp, where Pinf is the 

probability of a disease-causing dose being present in a portion of the product of interest and Pexp is the 

probability of exposure to the product per person per day. 

Pinf is defined as whichever is the larger value of the product of the values of the following variables 

(V): 

proportion of product contaminated (V6) × effect of process on the probability of contamination 

(V7) × effect of post-processing handling/storage (V9) × increase in the initial level of the factor 

required to reach an infectious dose (V10) × effect of preparation prior to eating (V11) 

or, in the case of a process resulting in the elimination of the hazard: 

proportion of product re-contaminated (V8) × effect of post-processing handling/storage 

(V9) × increase in the initial level of the factor required to reach an infectious dose (V10) × effect 

of preparation prior to eating (V11) 

Pexp is given by the product: 

frequency of consumption (V3) × proportion of the population that consumes the product (4) 

The “total predicted illnesses/annum in population of interest” is calculated as: 

365 (i.e. days per year) × “probability of illness per consumer per day” (as described 

above) × fraction of population considered in at risk class (V2) × total population (V5) 

The “risk ranking” is calculated based on the “comparative risk” estimate: 

probability of illness per day per consumer of interest (as described above) × hazard severity 

(V1) × proportion of population consuming (V4) × proportion of total population in population of 

interest (V2) 

2.4.7. Presentation of the results 

The results of Risk Ranger tool are the values of the three risk metrics described above which are 

presented in a simple Excel spreadsheet together with the selected values of the variables. The user has 
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to calculate the above risk metrics for each pair of food–pathogen separately and compare them 

manually. There is no graphical representation of the results. 

2.5. microHibro 

2.5.1. General description 

microHibro is a quantitative model based on prevalence and concentration data for pathogens at the 

starting point of the risk assessment and then using cross-contamination, growth, survival, intervention 

rates and dose–response as key variables that would affect the outcome of the model. 

microHibro is the result of a national and regional project focused on RTE products, which is being 

expanding to new food categories. The main purpose is to offer an easy-to-use tool to end-users, risk 

managers, food business operators and risk assessors. The application has been developed as a web-

based tool, considering as important features, flexibility, updatability and usability, underpinned in a 

solid and validated mathematical structure. The software is developed by Hibro research group 

(University of Cordoba, Spain) in collaboration with Optimum Quality, a software developing spin-off 

company (Technological Park of Cordoba, Spain). Hibro is in charge of administering, promoting and 

improving microHibro software from both technical and applicative sides. 

The mathematical structure of the exposure assessment model was translated into a user-friendly web-

based tool which is released as a beta version in English and Spanish (microHibro 2.0 Beta, 

www.microhibro.com). The software is licensed as General Public Licence (GPL) or equivalent, with 

open access. The application incorporates a module for growth predictions in different vegetable 

matrices and microorganisms as well as a module which allows the user to design and simulate 

exposure models to estimate the final concentration at the moment of consumption. It allows models 

selected by the user to be introduced into the application. 

microHibro is a stochastic modelling tool whose risk modelling module can be used for risk 

assessment, incorporating deterministic or quantitative values for initial concentration, growth, 

inactivation, recontamination and dose–response. Information about the variables can be included as 

either deterministic or stochastic data. The flexibility of the tool would allow the addition of further 

components. It provides an estimation of the risk and the probability of disease. Finally, the sensitivity 

analysis tools can be then applied to assess how variables and factors can impact the number of cases, 

i.e. public health. 

2.5.2. Risk metrics 

By inserting variables as point-estimate values or distributions, microHibro calculates outputs as 

frequency distribution of microbial growth and of probability of illness. The risk metric used is the 

“probability of illness”. 

2.5.3. Risk ranking approach 

microHibro follows a bottom-up (or forward) approach considering the steps of initial microbial 

concentration (including prevalence), growth, transfer, reduction and dose–response. 

2.5.4. Model type 

microHibro is a quantitative model for simulating growth of microorganisms in food matrices and 

estimating the probability of illness. 

2.5.5. Model variables (inputs) 

The model allows the carrying out of a probabilistic exposure assessment based on an object-oriented 

system with four model variables, i.e. growth, inactivation, transfer and dose–response, that can be 

defined by using either point-estimate or probability distributions of mass, temperature, pH, time, etc. 

The types of distributions include continuous (normal, exponential, uniform and triangular) and 
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discrete (binomial and Poisson) distributions. In the case of continuous distributions, the concentration 

unit is log10 colony-forming units (CFU); however, the discrete distributions, because of their discrete 

nature, are defined by arithmetic units, i.e. CFU. 

Distributions are defined by giving values to the parameters of the selected distribution. For example, 

in the case of normal distribution, the parameters to be defined are the standard deviation and mean. 

These are the input elements that can be selected: 

 Element 1: initial concentration, mass and prevalence. The initial concentration and 

prevalence can be implemented as distributions selected from a list or as fixed values, whereas 

mass can be included only as a fixed value. 

 Element 2: growth. The user can choose: (1) a selection of published models available, (2) to 

include additional models or (3) to introduce a distribution among the ones available in the 

tool or to include a fixed value. The mass can also be included. 

 Element 3: microbial transfer. Information about cross-contamination can be implemented. In 

order to do so, either distributions (from a list of continuous and discrete ones) or fixed values 

of the percentage of transfer of microorganisms and microbial concentration can be selected. 

The mass and probability of occurrence can also be included as fixed values. 

 Element 4: reduction in the concentration of microorganisms. Factors meaning a decrease in 

microbial concentration can also be considered. The user can choose: (1) a selection of 

published models available, (2) to include additional models or (3) to introduce a distribution 

among the ones available in the tool or to include a fixed value. The mass can also be 

included. 

 Element 5: dose–response models. There are dose–response models available in the tool or the 

user can implement new models. 

2.5.6. Data integration 

microHibro allows a probabilistic exposure assessment to be carried out based on object-oriented 

system with three basic types of predictive model: growth, inactivation and cross-contamination. The 

simulation method used in the application is based on the Monte Carlo method, which allows the 

generation of random values from defined probability distributions. To this end, the inversion method 

for generating random numbers was applied (Robert and Casella, 2004). A detailed user manual is 

available in the website (www.microhibro.com). 

2.5.7. Presentation of the results 

The application includes a basic tool for sensitivity analysis that allows: (1) the comparison of the 

inputs and outputs data graphically and (2) the simulation different scenarios of the designed risk 

model. 

With the first option, the simulated values for input variables, such as temperature, pH, etc., are plotted 

versus concentration and prevalence outputs derived from the simulated risk model in a scatter plot. 

With the scenario analysis, the effect of specific input variables (temperature, pH, etc.) on the final 

concentration of microorganism (i.e. output) is quantitatively assessed. The information obtained by 

the sensitivity analysis may be used to identify critical control points and risk thresholds in the 

analysed input variable. The application performs a set of simulations, each using one of the defined 

values, which is fixed during the whole simulation while the remaining variables are allowed to vary. 

The application returns graphs representing the changes in the main statistics of the final output with 

respect to the values specified for the analysed input variable. 

http://www.microhibro.com/
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2.5.8. User interface 

This tool is based on an object-oriented system. The types of objects are in the bar of design, at the 

bottom of the application and represent the previously mentioned basic models (growth, inactivation, 

cross-contamination). The user can design a processing line or specific food chain by dragging these 

objects to the design space in the central part of the application. The risk model is represented in the 

design space as a flow chart, where each basic model stands linearly behind another, according to how 

they were initially placed. It is a very user-friendly, easy-to-use interface. 

2.6. Swift quantitative microbiological risk assessment (sQMRA) tool 

2.6.1. General description 

sQMRA is a tool for food safety risk assessment developed by the Dutch National Institute for Public 

Health and the Environment. The tool is in Excel spreadsheet format and is based on general 

principles of food safety risk assessment, providing a standardised environment for full quantitative 

risk assessment. The model covers the food chain from retail to preparation and consumption and 

carries on to infection and illness. The first version (Evers and Chardon, 2010) is deterministic and 

calculates the probability of illness for a pathogen–product combination by estimating the exposure to 

a food-borne hazard for a number of categories which are input for a dose–response relationship. 

Recognising the limitations of simplified QMRA models, the tool is designed primarily for 

comparative risk assessment, regarding both the final risk estimates and the intermediate results. The 

second version of the tool (sQMRAv2) is stochastic (considering variability but not uncertainty) and is 

implemented using the @RISK add-in to Excel (Evers and Chardon, 2012, 2013). This second version 

was used in this assessment, as it included many improvements, such as growth or inactivation during 

storage by the consumer, an extended cooking module, a choice of two dose–response models, 

extended results presentation and reference and user-defined comparison datasets. The second version 

also provides estimates for severity of illness, using DALYs and cost-of-illness. The tool requires the 

user to enter data on prevalence and concentration of pathogens at retail, food consumption, effects of 

storage, cooking and cross-contamination in the kitchen, a dose–response relationship and, in 

version 2, on disease burden and cost of illness. The spreadsheet then converts the inputs into risk 

estimates using established algorithms. 

2.6.2. Risk metrics 

Several types of risk metrics are calculated by the sQMRA tool. The description below focuses on the 

second version of the tool. The output sheet of the tool provides summary information, whereas the 

model sheet provides extended intermediate calculation results: 

 Summary information on the scope of the risk assessment and input parameters. 

 Attribution of exposure (probability of exposure and total exposure) and illness estimates over 

different categories of storage by the consumer (room temperature, fridge or freezer). 

 Attribution of exposure (probability of exposure and total exposure) and illness estimates over 

different pathways in the kitchen (survival of heating well-cooked, undercooked or raw; cross-

contamination). 

 Contamination level (prevalence and number) at portion and population level in several steps 

of the food chain. 

 Infection, illness, disease burden and cost-of-illness at portion and population level. 

 Variability of contamination and effect estimates at portion level. 

 Statistical uncertainty in food consumption and retail data is included for illustrative purposes, 

but not used in the model calculations. 
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2.6.3. Risk ranking approach 

The sQMRA tool follows a “bottom-up” (or forward) approach to public health risk based on the 

standard microbial risk assessment paradigm, but restricted to the retail-to-consumption part of the 

food chain. Key outputs for risk ranking are: 

 contamination level (prevalence and number) at portion and population level in several steps 

of the food chain, and compared with a chosen reference model; 

 infection, illness, disease burden and cost-of-illness at portion and population level, and 

compared with a chosen reference model. 

2.6.4. Model type 

sQMRAv2 uses a quantitative, stochastic method for risk ranking. The tool requires the user to 

provide quantitative data concerning factors that will affect the food safety risk for consumers, arising 

from a specific food product and specific hazard, during the steps from retail to consumption. 

2.6.5. Model variables 

The sQMRA tool model includes 14 categories of input variables. These categories are: 

 portions consumed 

 pathogen prevalence in retail 

 portion size 

 pathogen concentration 

 storage conditions 

 growth and inactivation characteristics of pathogen 

 cross-contamination parameters 

 preparation categories 

 probability of survival during preparation 

 endpoint dose–response model 

 dose–response parameters 

 probability of illness given infection 

 DALY per case 

 cost-of-illness per case. 

For all variables, variability distributions are optional. The user can also enter deterministic 

information by leaving the cells for standard deviations (and other variability statistics) blank. 

2.6.6. Data integration 

The model equations are fully described and follow standard QMRA methodology.  

2.6.7. Presentation of the results 

The results of sQMRA tool are the values of the risk metrics described above, which are presented in 

the RESULTS sheet. Several summary graphs and tables are available. The built-in graphical 

presentations focus on comparison of the risk in relation to different storage conditions and 

preparation methods for the food product. For risk ranking, seven pre-defined reference datasets are 

available in the tool, with the CARMA model for Campylobacter on broiler meat (Nauta et al., 2007) 
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offered as default. The user can also enter additional scenarios. Once a user-defined reference 

pathogen–product combination is available in the tool, it can be selected with a drop-down list in the 

RESULTS sheet for 1:1 comparisons with the model scenario. 

2.7. FDA-iRISK 

2.7.1. General description 

The FDA-iRISK is a comparative risk assessment system for evaluating and ranking food–pathogen 

pairs developed by the Food and Drug Administration (FDA) through partnership and collaboration 

with experts within and outside US government organisations. It is designed to estimate risks 

associated with both microbial and chemical hazards (Chen et al., 2013). 

The FDA-iRISK is a web-based quantitative risk assessment system that enables users to assess, 

compare and rank the risks linked to multiple food–pathogen pairs: a relative rapid quantitative risk 

assessment. It is a modelling tool that integrates data on the hazard, data on the food supply system 

(from primary production, through manufacturing and processing, to retail distribution) and data on 

dose–response and health effects, using the built-in mathematical logic/equations and Monte Carlo 

simulations. It enables also evaluation of impact of interventions applied all over the food supply. 

The web-based user interface enables users to define the food and the hazard of interest, edit inputs, 

update references and assumptions, and store, view and share data, information and risk scenarios. The 

version used in this assessment was FDA-iRISK 1.0 (hereafter referred to simply as FDA-iRISK). 

2.7.2. Risk metrics 

To enable the comparisons of risks posed by different food–pathogen pairs, iRISK is using DALY as a 

common metric. DALY is an indicator of the time lived with a disability and the time lost because of 

premature mortality. A DALYs per case value is used as a measure of the averaged burden of disease 

per case of illness associated with each hazard, taking into account the relative frequency of each 

potential health outcome. The final output of FDA-iRISK, the annual DALYs, is obtained by 

multiplying the DALYs per case by the annual expected number of cases for a food–pathogen pair 

under evaluation. 

2.7.3. Risk ranking approach 

The FDA-iRISK follows a “bottom-up” (or forward) approach to public health risk ranking adhering 

to the standard microbial risk assessment paradigm. Risk ranking is based on factors that affect the 

food safety risk to a specific population, arising from a specific food product and specific hazard, 

during the steps from primary production to consumption. 

2.7.4. Model type 

The FDA-iRISK uses a quantitative method for risk ranking. The tool requires the user to specify 

hazards, foods and populations of interest and inputs data related to the exposure assessment and 

hazard characterisation components as defined in CODEX risk assessment standard. 

The FDA-iRISK provides a risk assessment model framework and templates, and the user chooses the 

suitable template for her/his risk scenario and provides evidence including the possibility for 

documenting the rationale behind the selection of the evidence. A risk scenario is defined by seven 

elements, described below. 

2.7.5. Model variables (inputs) 

The FDA-iRISK tool includes seven input elements: 

 Element 1: foods. The definition of food and its description will affect the process model. 
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 Element 2: hazards. The type of hazard will affect process model options and dose–response 

options provided within FDA-iRISK for the hazard. 

 Element 3: population groups. The choice of the population group is associated with the 

choice of dose–response model (e.g. two dose–response models for L. monocytogenes, one for 

high-risk population and another for low-risk population), specific patterns of health effects 

(e.g. pregnant women for abortion) and the consumption patterns (e.g. specific diet per age 

group). 

 Element 4: process models. The process model describes the impact of the different process 

stages (primary production, food processing, food handling, etc.) on the concentration and 

prevalence of the hazard in the considered food. The outputs of the process model are the 

probability distribution of the concentration of the hazard in a food serving and the prevalence 

of contaminated servings. Data required include the initial prevalence, distribution of the 

hazard concentration and the unit mass, data related to process stages from farm to table of the 

food supply chain up to the point of consumption. The number of stages depends on the food 

definition, hazard characteristics and the scope of the risk assessment. For example, the initial 

prevalence and concentration could be at retail level or at the primary production level. Hence, 

the process model is designed as a series of process stages, events or steps along the farm-to-

fork continuum. At each process stage, the user provides the expected impact of the 

considered stage on the prevalence and concentration of the hazards and on the unit size of the 

food. The effect, such as increase/decrease of the prevalence, increase/decrease of the hazard 

concentration in food, can be expressed as a fixed value or as a probability distribution. The 

process types and their data inputs are described in Appendix A. The template proposes nine 

process types: (1) increase by growth; (2) increase by addition (as cross-contamination from 

the processing environment); (3) decrease; (4) pooling; (5) partitioning; (6) evaporation or 

dilution; (7) partial redistribution that models partial cross-contamination among food units. 

The total hazards load remains constant; (8) total redistribution: the total hazards load is 

redistributed to all food units; (9) no change. 

 Element 5: consumption models. The consumption models are defined in relation to the 

specific population groups. For microbial hazards, the required inputs are the serving size 

(fixed value or distribution) per each food eating occasion and the number of eating occasions 

per year. For chemicals, the distribution of the average amount of the food eaten daily over a 

period of time or a lifetime and the number of consumers are required. 

 Element 6: dose–response models. The dose–response models are defined in relation to the 

specific population groups. 

 Element 7: health outcomes. 

2.7.6. Data integration 

The equations leading to the risk estimates are not detailed in FDA-iRISK technical documentation. In 

relation to the integration of the different elements of the risk assessment, especially for process types, 

it is said that the implemented program uses previously published mathematical equations by the 

International Life Sciences Institute (2010) and Nauta (2005, 2008) without mentioning them. At this 

step of FDA-iRISK reviewing, it is not possible to describe precisely how FDA-iRISK integrates all 

the different process types (see Appendix A). However, further to the information existing in the 

technical documentation, a paper by Chen et al. (2013), and checking the model outputs, the following 

integration procedure can be proposed, when the final concentration and prevalence are assessed (see 

graphical representation in Appendix A): 

1. A dose distribution per serving is generated taking into account the variability of the hazard 

concentration at the time of consumption (among contaminated servings) and the variability of 

serving size (among consumers from the same population group). 
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2. A risk-per-serving distribution is then derived using the population group-specific dose–

response model. 

3. The arithmetic mean of risk per contaminated serving is calculated from the risk per serving 

distribution (step 2). The mean risk of illness per serving is then calculated by multiplying the 

mean of risk per contaminated serving by the prevalence of contaminated units at the time of 

consumption. 

4. The expected annual number of cases of illness is then calculated by multiplying the mean risk 

of illness per serving by the total annual number of eating occasions for the considered 

population group. 

5. Finally, the annual DALYs are derived by multiplying the expected annual number of cases of 

illness by the DALYs per case of illness. 

Steps 1 to 5 of inputs integration are conducted per population group. The final output is the sum of 

DALYs obtained for each population group. 

2.7.7. Presentation of the results 

The outputs of the FDA-iRISK annual cases and annual DALYs, as well as the inputs, are summarised 

in tables provided in portable document format. Before creating the final report a filtering system 

using the description of the different scenarios is proposed to enable the different possibilities of 

ranking (comparisons). 

2.7.8. User interface 

FDA-iRISK is a web-based free software. It uses a tabbed interface to provide access to its 

functionality. When clicking on a link or tab, FDA-iRISK opens the requested page in the current 

window. Only one window is used at a time. Before using FDA-iRISK it is recommended to follow 

the quick start tutorial (downloadable from the FDA-iRISK website). This tutorial is very useful to 

understand the logic of the nested folders and the definition of the scenarios. The organisation of the 

different folders is intuitive for users with a minimum background on quantitative risk assessment. 

2.8. ECDC Burden of Communicable Diseases in Europe (BCoDE) toolkit 

2.8.1. General description 

The BCoDE is a project led and funded by the European Centre for Disease Prevention and Control 

(ECDC) and by a European consortium with the purpose of estimating the impact of communicable 

diseases (CDs) in the EU and the European Economic Area (EEA) Member States (MS). The project 

has four main objectives: (1) to promote evidence-based methods in epidemiology and decision-

making; (2) to introduce tools for planning and prioritisation; (3) to identify gaps in surveillance data 

availability and quality; (4) to provide tools for communicating complex information to decision 

makers. 

The BCoDE project has developed a stand-alone software providing a user-friendly interface, the 

BCoDE toolkit. The toolkit allows the calculation of the burden, expressed in DALYs of 32 CDs of 

interest to ECDC. This is made available to MS national experts to allow the estimation of national 

burden of CDs. The aim of the software is to assist MS in applying the proposed BCoDE evidence-

based approach for estimation of the burden of CDs, and to facilitate communication between data 

generators and users through multiple visualisation options, ultimately fostering its value in health 

policy formulation. The application is written in C++ using Qt C++ toolkit, version 4.8.4. All 

computations are implemented in C++ and the interface is HTML with JavaScript. 

Each selected disease generates a model visible as a graphical outcome tree. By default, users input 

country-specific notified data (optional The European Surveillance System (TESSy) data source) and 

age- and gender-specific multiplication factors, adjusting for under-estimation. The BCoDE toolkit 
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requires input of cases for 19 age groups (20 in case the congenital form is relevant, e.g. listeriosis) 

and gender split (overall 38/40 inputs). If necessary, the user is also allowed to edit population data as 

well as parameters of the outcome tree. The software will estimate the burden based on disease models 

describing the natural history of the disease, ensuring sequelae are considered. Calculations are based 

on Markov models and the number of iterations is chosen by the user. The output phase displays 

disease-specific results, impact of acute illness versus sequelae, gender- and age-specific DALYs and 

DALYs per 100 000 persons with uncertainty intervals, years of life lost as a result of premature 

mortality (YLLs), years lived with disability (YLDs) and DALYs per case. 

Aggregated results enabling a comparative assessment of the impact of CDs are displayed as bubble 

charts (DALYs/100 000) plotted against mortality, incidence and DALYs/case. Interactive tables and 

bar charts ranking diseases and uncertainty can be produced and exported. 

2.8.2. Risk metrics 

The main risk metric produced by the BCoDE toolkit is the burden of disease expressed in DALYs. 

Other related metrics include DALYs per 100 000, DALYs per case, YLD and YLL. These are 

available for each disease, age group, sex and outcomes of a given disease (the latter also includes data 

on incidence and mortality). Uncertainty intervals (lower bound 2.5th percentile and upper bound 

97.5th percentile), median and mean are displayed next to all the above-mentioned outputs. 

2.8.3. Risk ranking approach 

The methodology underlying the BCoDE toolkit is incidence and pathogen based, which basically 

entails a top-down approach. Risk ranking of infectious diseases involves listing these according to 

their impact on population health. For ranking of food-borne pathogens, additional data on attribution 

of the total disease incidence in a population to exposure by food in contrast to other pathways are 

necessary. If the risk assessment question is at a more detailed level (e.g. ranking the hazards in leafy 

greens), even more detailed attribution data are necessary. Such data are currently difficult to obtain 

for all food-borne hazards in the EU. 

Of interest for the purpose of the opinion, the BCoDE toolkit allows flexibility relating to population 

data (main denominator) and incidence (main input). For example, numerous models of the same 

disease can be created (and at will, changing the populations of the different models), allowing 

scenario analysis expressing the risk of a given food or different foods or categories of food, according 

to their risk of infecting humans in the same or different populations. This allows the tool to be used in 

a bottom-up approach, by using incidence estimates from the outputs of a quantitative risk assessment 

tool (e.g. FDA-iRISK, sQMRA) as inputs for the BCoDE tool. The former tools can provide incidence 

for a limited number of age groups (generally < 1 year of age, > 60 years of age and in between), 

whereas the BCoDE toolkit requires input of cases for 19 age groups (20 in case the congenital form is 

relevant, e.g. listeriosis) and male/female (overall 38/40 inputs). The user can redistribute the FDA-

iRISK and sQMRA outputs according to the observed age/sex distribution in the EU/EEA as reported 

to the ECDC TESSy database. This combination of tools would create a very flexible, powerful and 

detailed approach to rank risks of pathogens in food at any desired level of detail with regard to food–

pathogen combinations. 

2.8.4. Model type 

The BCoDE toolkit uses a quantitative method for risk ranking. Both the default input and the optional 

changes to the models are quantitative: number of cases, population under study, life expectancy and 

disease model parameters are numerical and based on the best available evidence. The output is also 

fully numerical, with uncertainty expressed in confidence intervals. 

2.8.5. Model variables 

Overall, seven sets of input variables are editable. Default variables are age and sex specific (1) 

number of cases and (2) multiplication factors adjusting under-estimation. All other embedded 
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variables are editable per gender and age group: (3) population, (4) life expectancy and outcome tree 

parameters (5) transitional probabilities, (6) disability weights and (7) duration of outcomes. 

2.8.6. Data integration 

Each disease is represented by a model including the related health outcomes and its burden is 

calculated and expressed in DALYs. These are not age-weighted and no time discounting is applied. 

2.8.7. Presentation of the results 

Results are printable and exportable in portable document format and in Excel. 

Results are presented in two tabs: 

 Detailed results: a specific page presenting all results relative to each specific disease. The 

user can browse diseases across a scroll-down menu. For each disease the following is 

presented: 

– Results table. Columns include the following: cases, incidence, YLD, YLL and DALYs 

per year, DALYs per case and DALYs per 100 000. Rows include: total infected, total 

acute, each sequela included in the outcome tree (also cases and deaths) and total 

sequelae. 

– Two coloured results charts. A bar chart including total DALYs, DALYs due to acute 

disease and DALYs due to sequelae, all split between YLL and YLD. A pie chart 

summarising the contribution of each sequela and acute to the total burden of the disease. 

– Results details. Table with age group- and sex-specific results, including 2.5th and 97.5th 

percentiles for DALYs, DALYs per 100 000 and DALYs per case. Bar chart with age 

group- and sex-specific results and percentile intervals. 

 Aggregated results: results for all diseases are summarised; comparability and ranking is 

allowed. 

– Mortality/incidence comparison. Static bubble chart: each disease is represented by a 

bubble of a different colour. The diameter of the bubble represents DALYs per 100 000. 

Each bubble is plotted against incidence per 100 000 (x-axis) and mortality per 100 000 

(y-axis). An interactive legend is available on the right-hand side: if a disease is 

unselected, the chart will automatically reconfigure to the new highest parameters. 

– DALY comparison. Similar to the previous bubble chart, x-axis is incidence per 100 000 

and y-axis is DALYs per case. 

– Ranking results table. Final interactive ranking summary table: each row is a disease and 

columns include YLD, YLL, DALY, DALYs per case and DALYs per 100 000. When 

clicking on the heading of column, the ranking changes according to the ranking of the 

chosen column. 

– Ranking results bar chart. Expression of the previous table in a bar chart with percentile 

intervals. 

Examples of results are reported in Appendix A.  
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3. Performance evaluation of the selected tools 

The selected tools were evaluated using two case studies: a single pathogen–multiple food setting 

(L. monocytogenes in RTE foods) and multiple pathogens in a single food (STEC, Salmonella spp., 

L. monocytogenes, Campylobacter spp., Norovirus, Cryptosporidium spp. and Giardia spp.) in leafy 

greens. The P3ARRT was not included in the evaluation since it was considered of the same structure 

with the EFoNAO-RRT. 

As described in the previous section, the selected tools present significant differences in the risk 

metrics, the ranking approach, the model type, the model’s variables and data integration. The 

objective of the evaluation of the tools in the two case studies performed in this section was to identify 

potential problems in using the tools and demonstrate the effect of the above differences in the risk 

ranking outputs. For this, the outputs of the different tools were also compared with a reference model 

developed by the BIOHAZ Panel. The reference model is a bottom-up, fully quantitative, stochastic, 

risk ranking model which follows the risk assessment paradigm and respects the laws of probability 

and calculus. 

3.1. Development of a reference risk ranking model 

The reference model is a retail-to-consumption model starting with the initial prevalence and 

concentration of the pathogens in the food products at retail. The growth of the pathogens during 

distribution and storage is calculated using the appropriate growth models based on the storage time 

and temperature. The concentration of the pathogen in a contaminated food at the time of consumption 

is calculated as the sum of the initial concentration and the growth during storage (in log10 scale). In 

order to take into account the maximum population density, an upper limit is set to the latter 

concentration. In the case of food products that are cooked before consumption, a decline of the 

pathogen during cooking is taken into account. The dose (cells per serving) is calculated as the product 

of the concentration at consumption time and the serving size using the Poisson distribution. The dose 

is then input to a dose–response model to calculate the probability of illness from the consumption of a 

contaminated serving. The probability of illness per serving is then estimated by multiplying the 

probability of illness per contaminated serving by the initial prevalence at retail. The total number of 

illnesses per annum is calculated as the product of the mean probability of illness per serving and the 

total number of servings per annum. Finally, the total number of servings per annum is multiplied by 

the DALYs per case to estimate the total DALYs. 

The structure of the reference model is shown in detail in Figure 3 and Table 1. 
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Figure 3:  Structure of the reference model 

Table 1:  Variables and data integration used in the reference model  

Input 

variable
(a)

 
Description Units Data integration 

Pr Prevalence at retail % – 

Cr Concentration at retail CFU/g – 

Gs Growth during storage CFU/g Calculated from growth model based on 

the storage temperature and time 

Rc Reduction during cooking CFU/g – 

Cc Concentration at consumption time Log10 

CFU/g 

log(Cr) + log(Gs) – log(Rc) with 

log(Cr) + log(Gs) ≤ log(Nmax) 

Ss Serving size g – 

D Dose (cells per serving) CFU Poisson (Cc × Ss) 

PIllc Probability of illness per contaminated 

serving 

– Calculated from dose–response model 

based on the dose 

PIll Probability of illness per serving – Pci × Pr 

Ts Total number of annual servings – – 

Ti Total number of illnesses per annum – Mean Pi × Ts 

DALYs DALYs per annum  Ti × DALYs per case 

(a): Details of the variables are presented in the description of the databases of the two case studies. 
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In the reference model, only variability of the input variables was taken into account by introducing 

the input variables with probability distributions as presented in the description of the datasets of the 

two case studies. The model was run in Excel with @Risk using the Monte Carlo simulation with 

30 000 iterations. 

3.2. Application of the available tools to rank the risk of L. monocytogenes in selected RTE 

food categories 

The available tools, decision trees, EFoNAO-RRT, Risk Ranger, microHibro, sQMRA, FDA-iRISK 

and BCoDE, were evaluated through an application exercise on risk ranking of L. monocytogenes in 

selected RTE food categories. The objective of the exercise was to apply the different tools using the 

same dataset, identify problems in using the tools and evaluate the performance of each tool based on 

specific criteria. The dataset used for the exercise was mainly based on the FDA/FSIS report on 

Quantitative assessment of the relative risk to public health from food-borne L. monocytogenes among 

selected categories of RTE foods (2003). The following five food categories were selected to be 

included in the exercise, representing different processing/storage conditions, consumer preparation, 

consumption patterns and risk at the time of consumption: 

 smoked seafood 

 soft ripened cheese 

 pasteurised milk 

 frankfurters (reheated) 

 deli meats 

Since the different tools require different input parameters, data extracted from FDA/FSIS report were 

modified in order to be applicable to all tested tools. The selection of data from the FDA/FSIS report 

does not aim to compare the outputs of the tested tools with that of the FDA/FSIS risk assessment 

model but to build a realistic database which would be applicable to all risk ranking tools. 

The basic common dataset used for this case study is presented in detail in Table 2. The starting point 

of the exercise was the retail level. The database consists of 10 input parameters: (1) the prevalence of 

the pathogen at retail level; (2) the concentration of the pathogen at retail level; (3) the growth of the 

pathogen during domestic storage; (4) the reduction in the pathogen during consumer cooking in the 

case of frankfurters; (5) the serving size for each food category; (6) the total number of annual 

servings and (7) the population of interest (7) chosen for elderly population (more than 65 years of 

age); (8) the dose–response based on an exponential model; (9) the DALYs per case; (10) and the 

cost-of-illness per case As shown in Table 2, parameters 1 to 6 were different for each food category 

since they refer to the product, while parameters 7 to 10 were the same for all food categories since 

they refer to the consumer population or the pathogen. 

Table 2:  Common dataset used for the application exercise on risk ranking of L. monocytogenes in 

selected ready-to-eat food categories 

Parameter 
Smoked 

seafood 

Soft ripened 

cheese 

Pasteurised 

milk 

Frankfurters 

(reheated) 
Deli meats 

1. Prevalence at retail (%) 6.4 1.5 0.3 5.5 7.5 

2. Concentration at retail 

(arithmetic mean of 

contaminated product, CFU/g) 

3 800 37 7 3 400 000 4 100 

3. Growth at domestic 

storage (log10 CFU/g) 

0.482 0.000 0.985 0.848 0.425 

4. Reduction during cooking 

for frankfurters (log10 CFU/g) 

– – – 3 – 

 



Development of a risk ranking toolbox for the EFSA BIOHAZ Panel 

 

EFSA Journal 2015;13(1):3939 31 

Table 2: Common dataset used for the application exercise on risk ranking of L. monocytogenes in 

selected ready-to-eat food categories (continued) 

Parameter 
Smoked 

seafood 

Soft ripened 

cheese 

Pasteurised 

milk 

Frankfurters 

(reheated) 
Deli meats 

5. Serving size (g) 61 35 228 76 60 

6. Total number of annual 

servings for elderly 

4.10E+07 1.80E+08 1.80E+10 5.80E+08 2.80E+09 

7. Population of interest 

(elderly) 

32 500 000 32 500 000 32 500 000 32 500 000 32 500 000 

8. Dose–response (R of 

exponential model) 

8.40E–12 8.40E–12 8.40E–12 8.40E–12 8.40E–12 

9. DALYs/case 0.6 0.6 0.6 0.6 0.6 

10. Cost-of-illness (€/case) 29 114 29 114 29 114 29 114 29 114 

DALY: disability-adjusted life years. 

 

The above parameters were used to test all tools to rank the risk of the chosen five food categories. 

Where necessary, parameters were translated according to the requirements of each tool. In addition, 

for the quantitative tools FDA-iRISK, sQMRA and microHibro, variability was taken into account for 

the input parameters described below. 

Concentration of the pathogen at retail level 

Data on the concentration of L. monocytogenes at retail from the FDA/FSIS report were fitted to the 

log-normal distribution. The parameters of the distribution and the mean concentration for the 

different food categories and the mean concentration are presented in Table 3. 

Table 3:  Parameter values of the log-normal distribution for the concentration of L. monocytogenes 

at retail 

Food category Log10 scale mean Log10 scale SD 
Arithmetic mean 

(CFU/g) 

Smoked seafood 2.459 0.987 3 800 

Soft-ripened cheese 1.152 0.601 37 

Pasteurised milk 0.575 0.484 7 

Frankfurters (reheated) 5.583 0.908 3 400 000 

Deli meats 2.425 1.016 4 100 

SD: standard deviation. 

 

 

Growth of the pathogen during domestic storage 

Growth rates during domestic storage were estimated using the cardinal model with inflection (CMI) 

originally developed by Rosso et al. (1993): 

𝜇𝑚𝑎𝑥 =  
𝜇𝑚𝑎𝑥𝑜𝑝𝑡

(𝑇−𝑇𝑚𝑎𝑥)(𝑇− 𝑇𝑚𝑖𝑛)2 

(𝑇𝑜𝑝𝑡− 𝑇𝑚𝑖𝑛)[(𝑇𝑜𝑝𝑡 –𝑇𝑚𝑖𝑛)(𝑇−𝑇𝑜𝑝𝑡)−(𝑇𝑜𝑝𝑡− 𝑇𝑚𝑎𝑥)(𝑇𝑜𝑝𝑡 + 𝑇𝑚𝑖𝑛− 2𝑇)]
 (1) 

where Topt, Tmin and Tmax (°C) are the theoretical optimum, minimum and maximum temperature for 

growth, respectively, and μmax opt is the growth rate at optimum temperature. For L. monocytogenes, 

the following cardinal parameters were used as reported by Rosso et al. (1993): Topt = 37 °C, 

Tmin = 1.72 °C and Tmax = 45.5 °C. Growth of the pathogen during domestic storage was estimated with 

an exponential primary model with no lag phase based on the parameters for storage temperature, 

storage time, optimum growth rate (expressed as minimum generation time, GTmin = log2/µmax) and 

maximum population density presented in Table 4 for the different food categories. 
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Table 4:  Parameters used for the estimation of L. monocytogenes growth during domestic storage 

for the different food categories 

Food category 

Storage 

temperature 

(°C) 

Storage time 

(hours) 

(exponential 

distribution) 

Generation 

time at 

optimum 

temperature 

conditions 

Maximum 

population 

density 

Mean 

growth 

(log10 

CFU/g) 

Smoked seafood 6.5 Exp(96), max 720 2.69 6 0.482 

Soft ripened cheese 6.5 0.39 Infinite N/A 0.000 

Pasteurised milk 6.5 Exp(96), max 288 1.11 9 0.985 

Frankfurters (reheated) 6.5 Exp(120), max 359 1.62 8 0.848 

Deli meats 6.5 Exp(120), max 360 3.23 6 0.425 

N/A: not applicable. 

The above approach was used for sQMRA and microHibro. In the case of FDA-iRISK, which does not 

provide the option of using a growth model, a custom probability for the total growth of the pathogens 

during domestic storage, estimated based on the approach below, using the Monte Carlo simulation 

(Figure 4) was used. 

 

Figure 4:  Custom probability for the total growth of Listeria monocytogenes during domestic 

storage 

Serving size 

Variability in serving size for FDA-iRISK, sQMRA and microHibro tools was described with a 

gamma distribution. The parameters of the distribution for the different food categories are presented 

in Table 5. 
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Table 5:  Parameters of the gamma distribution used to describe the variability in the serving size 

for different food categories 

Food category 
Gamma distribution parameters 

Mean serving size (g) 
a b 

Smoked seafood 4.76 12.74 61 

Soft ripened cheese 1.65 21.10 35 

Pasteurised milk 2.99 76.20 228 

Frankfurters (reheated) 1.37 55.6 76 

Deli meats 4.83 12.40 60 

3.2.1. Qualitative decision trees 

Decision trees used in the opinion on public health risks represented by certain composite products 

(EFSA Panel on Biological Hazards (BIOHAZ), 2012a) were used for the examples considered in this 

Section. The decision trees were originally used to rank risks in certain composite products, based on 

food parameters impacting on growth/survival of the hazards involved, but were developed in order to 

be similarly applicable to all other foods. The one used for this specific example (i.e. 

L. monocytogenes in selected RTE food categories) is shown in Figure 2, Section 2.1.7, and relates to 

hazards that usually need to grow in food to cause illness. 

3.2.1.1. Input parameters 

The decision tree input parameters were selected based on the dataset presented in Table 3. The final 

input parameters for the five food categories are shown in Table 6. 

Table 6:  Input parameters of decision trees for the five food categories 

1. Microbial treatment in package with no recontamination? Qualitative score  

Smoked seafood No 

Soft ripened cheese No 

Pasteurised milk No 

Frankfurters (reheated) No 

Deli meats No 

2. Supports growth? 

Smoked seafood Yes 

Soft ripened cheese No 

Pasteurised milk Yes 

Frankfurters (reheated) Yes 

Deli meats Yes 

3. Cooking before consumption?  

Smoked seafood No 

Soft-ripened cheese N.A. 

Pasteurised milk No 

Frankfurters (reheated) Yes 

Deli meats No 

N.A.: question not applicable for this food (negative answer to the previous question). 

3.2.1.2. Risk ranking outputs 

The ranking using the decision tree is shown in Table 7. The risk was qualified as low risk, moderate 

risk or QPR (Qualified Presumption of Risk) for L. monocytogenes. According to the decision tree, 

QPR means that the pathogen considered, if present, has the potential to cause disease via 

consumption of the food, and that the risk should be further qualified based on hygienic conditions in 

the preparation and/or on the possible growth of the pathogen before consumption, given the shelf life, 

storage temperature or conditions of use by the consumer (EFSA Panel on Biological Hazards 
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(BIOHAZ), 2012a). In this case, since it is considered that there is a possibility for growth of the 

pathogen before consumption, and that proper hygienic conditions may not be assumed, the risk for 

the three foods classified as QPR (smoked seafood, pasteurised milk and deli meats) has been further 

qualified as being high. 

Table 7:  Risk ranking outputs according to the decision tree for Listeria monocytogenes in selected 

ready-to-eat food categories  

Product  Risk Ranking 

Smoked seafood  High 1 

Soft-ripened cheese  Low 3 

Pasteurised milk  High 1 

Frankfurters (reheated)  Moderate 2 

Deli meats High 1 

3.2.2. EFSA food of non-animal origin (EFoNAO) 

3.2.2.1. Input parameters 

Input data used for the evaluation are summarised in Table 8. In contrast to when EFoNAO-RRT was 

developed, this case study was not based on data from the EU. In the tool, category definitions were 

strictly based on EU data (e.g. for the epi-criteria). Here, US data were used instead. The CDC 

Foodborne outbreak online database was used to collect data on reported outbreaks and cases in the 

USA between 1998 and 2006 (CDC, online). Total cases and multipliers are based on Mead et al. 

(1999). However, the same category definitions as in the original tool were used. In the original tool, 

inactivation is not considered. This means that in the present evaluation of frankfurters, which 

commonly are reheated before consumption, only growth is considered and not inactivation, which 

may lead to an over-estimation of the risk. The scores for the criteria are presented in Table 9. 

Table 8:  Input data used for ranking of five ready-to-eat foods using the EFoNAO-RRT (EFSA 

BIOHAZ Panel, 2013)  

Criterion Input/data 
Smoked 

seafood 

Soft 

ripened 

cheese 

Pasteurised 

milk 

Frankfurters 

(reheated) 

Deli 

meats 
Comments 

1. Epi-link No of 

outbreaks 

0 0 0 3(a) 7 CDC data(b) 

No of cases 0 0 0 109 142  

Score 1 1 1 3 4  

2. Incidence No of cases 1 259      

Multiplier 2.0      

Total cases(c) 2 493 2 493 2 493 2 493 2 493  

Score 1 1 1 1 1  

3. Public health 

burden 

DALYs per 

1 000 cases 

600 600 600 600 600  

Score 3 3 3 3 3  

4. Dose–

response 

IllD50 (log10 

CFU) based on 

R=8.4E–12 

10.92 10.92 10.92 10.92 10.92  

Score 2 2 2 2 2  

5. Prevalence of 

contamination 

Prevalence 6.4 1.5 0.3 5.5 7.5  

Score 4 4 3 4 4  

6. Consumption Percentage 

consuming 

0.35 1.52 151 4.9 24  

Score 1 2 4 3 3  
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Table 8:  Input data used for ranking of five ready-to-eat foods using the EFoNAO-RRT (EFSA 

BIOHAZ Panel, 2013) (continued) 

Criterion Input/data 
Smoked 

seafood 

Soft ripened 

cheese 
Pasteurised milk 

Frankfurters 

(reheated) 

Deli 

meats 
Comments 

7. Growth 

potential 

Growth during 

storage (log10/g) 

0.482 0 0.985 0.848 0.425  

Growth score 4 1 4 4 4  

Shelf life (days) 4 to 30 No 

growth 

4 to 12 5 to 15 5 to 15 Estimated 

mean and 

maximum 

domestic 

storage times 

Shelf life Score 4 – 2 3 3 According to 

EFoNAO 

opinion 

scored 

according to 

longest shelf 

life 

IllD50: The dose needed to cause illness in 50 % of exposed humans. 

(a): Used data for hot dogs. No Frankfurter outbreaks reported. 

(b): The CDC Foodborne outbreak online database (http://wwwn.cdc.gov/foodborneoutbreaks/). Reported outbreaks in the 

USA between 1998 and 2006.  

(c): Total number of cases as cited in Listeria FDA report (2003) was estimated by Mead et al. (1999), under the assumption 

of underreporting by a factor of 2 and that 99 % of cases are food borne. Estimated number of total cases using data in 

Scallan et al. (2011), under the assumption of under-reporting by a factor of 2.1, is 1 591 cases. This difference would 

not change the categorisation, i.e. the score. 

3.2.2.2. Risk ranking outputs 

Since the case study is of the type one pathogen and multiple foods, scores for the criteria linked only 

to the pathogen were the same for all foods and did not contribute to differences in total scores and 

thus, rank. Criteria related to the food and which contributed to differences in risk scores were epi-

link, prevalence of contamination, consumption and growth potential. The epi-link explained the 

difference between deli meats and frankfurters, whereas consumption was a major contributor to the 

risk score of pasteurised milk and a third place ranking. 

Table 9:  Summary of criteria scores and total risk scores associated with L. monocytogenes in five 

ready-to-eat foods(a) 

Criterion 
Criterion 

number 

Scores 

Smoked 

seafood 

Soft ripened 

cheese 

Pasteurised 

milk 

Frankfurters 

(reheated) 

Deli meats 

Epi-link 1 1 1 1 3 4 

Incidence 2 1 1 1 1 1 

Public health 

burden 

3 3 3 3 3 3 

Dose–response 4 2 2 2 2 2 

Prevalence of 

contamination 

5 4 4 3 4 4 

Consumption 6 1 2 4 3 3 

Growth 

potential 

7 4 1 3 4 4 

(a):  Scores were estimated by the EFoNAO risk ranking tool using input data in Table 2 and equal weights for all criteria. 

  

http://wwwn.cdc.gov/foodborneoutbreaks/
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Table 10:  Risk ranking outputs of EFSA food of non-animal origin for L. monocytogenes in selected 

ready-to-eat food categories  

Product Total score Ranking 

Smoked seafood 16 4 

Soft ripened cheese 14 5 

Pasteurised milk 17 3 

Frankfurters (reheated) 20 2 

Deli meats 21 1 

 

3.2.3. Risk Ranger 

3.2.3.1. Input parameters 

The input parameters of Risk Ranger tool were selected based on the dataset presented in Table 2. For 

some parameters, the options provided by Risk Ranger for the values did not match with the dataset. 

In this case, the option with the closest value to the dataset was selected. The final input parameters for 

the five food categories are shown in Table 11. 

Table 11:  Input parameters of Risk Ranger for the five food categories  

1. Hazard severity Score  Numerical
(a)

 

Smoked seafood MODERATE hazard 0.01 

Soft ripened cheese MODERATE hazard 0.01 

Pasteurised milk MODERATE hazard 0.01 

Frankfurters (reheated) MODERATE hazard 0.01 

Deli meats MODERATE hazard 0.01 

2. How susceptible is the consumer? 

Smoked seafood GENERAL 1 

Soft ripened cheese GENERAL 1 

Pasteurised milk GENERAL 1 

Frankfurters (reheated) GENERAL 1 

Deli meats GENERAL 1 

3. Frequency of contamination 

Smoked seafood Common (50 %) 0.5 

Soft ripened cheese Common (50 %) 0.5 

Pasteurised milk Common (50 %) 0.5 

Frankfurters (reheated) Common (50 %) 0.5 

Deli meats Common (50 %) 0.5 

4a. Effect of process 

Smoked seafood The process RELIABLY ELIMINATES hazards 0 

Soft ripened cheese The process RELIABLY ELIMINATES hazards 0 

Pasteurised milk The process RELIABLY ELIMINATES hazards 0 

Frankfurters (reheated) The process RELIABLY ELIMINATES hazards 0 

Deli meats The process RELIABLY ELIMINATES hazards 0 

4b. Effect of preparation for meals 

Smoked seafood Meal Preparation has NO EFFECT on the hazards 1 

Soft ripened cheese Meal Preparation has NO EFFECT on the hazards 1 

Pasteurised milk Meal Preparation has NO EFFECT on the hazards 1 

Frankfurters (reheated) OTHER 1.00E–03 

Deli meats Meal preparation has NO EFFECT on the hazards 1 
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Table 11:  Input parameters of Risk Ranger for the five food categories (continued) 

5. Is there potential for recontamination? 

Smoked seafood OTHER 0.064 

Soft ripened cheese OTHER 0.015 

Pasteurised milk OTHER 0.003 

Frankfurters (reheated) OTHER 0.055 

Deli meats OTHER 0.075 

6. How effective is the post-processing control system? 

Smoked seafood NOT CONTROLLED 3.00 

Soft ripened cheese WELL CONTROLLED 0.00 

Pasteurised milk NOT CONTROLLED  10.00 

Frankfurters (reheated) NOT CONTROLLED  10.00 

Deli meats NOT CONTROLLED 3.00 

7. How much increase is required to reach an infectious or toxic dose? 

Smoked seafood OTHER  2.83E+06 

Soft ripened cheese OTHER  5.05E+08 

Pasteurised milk OTHER  2.00E+06 

Frankfurters (reheated) OTHER  3.10E+08 

Deli meats OTHER  3.75E+05 

8. Frequency of consumption 

Smoked seafood A few times per year 3 

Soft ripened cheese A few times per year 3 

Pasteurised milk Daily 365 

Frankfurters (reheated) Monthly 12 

Deli meats Weekly  52 

9. Proportion of consuming population 

Smoked seafood All (100 %) 1 

Soft ripened cheese All (100 %) 1 

Pasteurised milk All (100 %) 1 

Frankfurters (reheated) All (100 %) 1 

Deli meats All (100 %) 1 

10. Size of consuming population 

Smoked seafood OTHER 32 500 000 

Soft ripened cheese OTHER 32 500 000 

Pasteurised milk OTHER 32 500 000 

Frankfurters (reheated) OTHER 32 500 000 

Deli meats OTHER 32 500 000 

(a): See Section 2.4.2 for description of risk metrics of the tool. 

 

3.2.3.2. Risk ranking output 

The ranking of the three risk metrics provided by Risk Ranger is shown in Table 12. The ranking 

output was the same for the probability of illness per day per consumer of interest, the total predicted 

illnesses/annum in population of interest and the risk ranking metrics. The tool ranked the foods in the 

following order of decreasing risk: deli meats, pasteurised milk, smoked seafood, soft ripened cheese 

and frankfurters. 

  



Development of a risk ranking toolbox for the EFSA BIOHAZ Panel 

 

EFSA Journal 2015;13(1):3939 38 

Table 12:  Risk ranking outputs of Risk Ranger for L. monocytogenes in selected ready-to-eat food 

categories 

Product Probability of illness per day per consumer of interest Ranking 

Smoked seafood 1.86E–09 3 

Soft ripened cheese 2.44E–13 4 

Pasteurised milk 1.50E–08 2 

Frankfurters (reheated) 5.84E–14 5 

Deli meats 3.18E–07 1 

Product Total predicted illnesses/annum in population of interest Ranking 

Smoked seafood 22.04 3 

Soft ripened cheese 0.003 4 

Pasteurised milk 177.7 2 

Frankfurters (reheated) 0.001 5 

Deli meats 3 767 1 

Product Risk ranking Ranking 

Smoked seafood 39 3 

Soft ripened cheese 17 4 

Pasteurised milk 44 2 

Frankfurters (reheated) 13 5 

Deli meats 52 1 

3.2.4. microHibro 

3.2.4.1. Input parameters 

The input parameters of microHibro were selected based on the dataset presented in Table 2, modified 

as described below. Parameters can be entered as fixed or variable. For variable inputs, microHibro 

proposes a limited choice of distributions (normal, gamma, beta, exponential, uniform, triangular), as 

it also does for discrete ones (binomial and Poisson), although the tool allows the inclusion of new 

ones. 

For prevalence and concentration at retail microHibro can use the distributions mentioned above, 

which can be truncated to a maximum and minimum values. The food portion size can be introduced 

and taken into account in the calculations. For growth data, microHibro presents a selection of 

published growth models for different purposes that can be selected. In addition, the user can also 

introduce new growth models in the application and use them for the calculations. For inactivation, it 

can work with direct input of log-reduction fixed values or distributions. Consumption can be 

described by the distributions indicated; in this case study the gamma distribution was used. Eating 

occasions can be implemented as a fixed value. 

For the probability of illness, microHibro uses a log scale in the calculation so it actually provides the 

mean of the log probability of illness. Dose–response is calculated as r-value, but alternative models 

can be included by the user and selected for the calculations. 

3.2.4.2. Risk ranking outputs 

The outputs from microHibro are presented in Table 13. 
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Table 13:  Risk ranking stochastic outputs of microHibro for L. monocytogenes in selected RTE food 

categories 

Product Mean probability of illness  

per day per consumer of interest 

Ranking 

Smoked seafood 2.89E–09 2 

Soft ripened cheese 3.77E–10 4 

Pasteurised milk 2.69E–09 3 

Frankfurters (reheated) 6.16E–13 5 

Deli meats 8.38E–09 1 

3.2.5. Swift quantitative microbiological risk assessment (sQMRA) 

3.2.5.1. Input parameters 

Not all the inputs specified in Table 2 can be entered directly into the sQMRA model; some pre-

processing of inputs is necessary as the tool only accepts inputs in one format (see Table 14). In some 

cases, pre-processing is straightforward, e.g. calculating the consumption in portions per month from 

the total population and the annual consumption, or specifying portions sizes by the mean and standard 

deviation and not by the parameters of the underlying gamma distribution. In other cases, more effort 

is needed and may require considerable skills in quantitative microbiology, e.g. knowledge of growth 

models. sQMRA cannot accept direct input of log-growth but calculates growth according to an 

exponential growth model with a gamma model for the impact of temperature on the growth rate. It 

was assumed that all food is stored in the fridge. Cardinal growth parameters for L. monocytogenes 

were taken from Augustin et al. (2005). Storage temperature was then empirically adjusted to achieve 

average log-growth in the deterministic model as specified for the different products in Table 8. 

For soft ripened cheese, storage temperature was set to –2 °C to force the model into die-off mode. 

The maximum population density was set at 106 CFU/g for all food products except for frankfurters, 

for which it was set at 108. 

Mean storage time was used as the average of the most likely range in the original report, while 

maximum storage time was used as the maximum of the maximum range. For frankfurters, the 

average storage time was calculated as the sum product of the full distribution; the maximum was set 

at 21 days to prevent extremely skewed distributions. 

Table 14:  Input parameters specific to the sQMRA models 

Input parameter Comments 

Prevalence at retail sQMRA models only variability 

Concentration at retail sQMRA cannot work with percentiles, only with log-normal distributions. Output 

from the FDA model is highly skewed, and a log-normal distribution does not 

adequately fit these data. Only average was used. 

Growth during 

domestic storage 

sQMRA cannot accept direct input of log-growth but calculates growth according to 

an exponential growth model with a gamma model for the impact of temperature on 

the growth rate. 

It was assumed that all food is stored in the fridge. Mean storage time was used as the 

average of the most likely range, while maximum storage time was used as the 

maximum of the maximum range. For frankfurters, average storage time was 

calculated as the sum product of the full distribution; the maximum was set at 21 

days to prevent extremely skewed distributions. 

Cardinal growth parameters were taken from Augustin et al. (2005). Tmin = –1.72 °C; 

Topt = 37 °C. μopt (h
–1 at 37 ºC) in smoked seafood: 0.549; soft ripened cheese: 0.000; 

pasteurised milk: 0.941; frankfurters (reheated): 0.480; deli meats: 1.033. 

Storage temperature was empirically adjusted to achieve average log-growth as 

specified for the different products. 
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Table 14: Input parameters specific to the sQMRA models (continued) 

Input parameter Comments 

Growth during 

domestic storage 

(continued) 

For soft ripened cheese, storage temperature was set to –2 °C to force the model into 

die-off mode. 

Maximum population density set at 1E6; 1E8 for frankfurters. 

Reduction during 

cooking 

Probability of survival calculated as 10^(–log-reduction). Only average value used as 

using also 5th and 95th percentile has a major impact on the average reduction. 

Serving size Only mean was used 

Consumption Population size is 3.24E7; 13 % of total population specified in spreadsheet. sQMRA 

requires number of servings per person-months; this was adjusted to achieve the 

specified number of serving annually. 

DALYs/cost-of-

illness 

Direct inputs as specified 

Dose–response r-value for dose–illness model as specified. 

sQMRA: swift quantitative microbiological risk assessment. 

 

3.2.5.2. Risk ranking outputs 

The outputs obtained after running the sQMRA tool in both the deterministic and stochastic 

approaches are presented in Tables 15 and 16. 

Table 15:  Risk ranking outputs of sQMRA for L. monocytogenes in selected ready-to-eat food 

categories, using the deterministic approach 

Product Mean probability of illness per day per consumer of interest Ranking 

Smoked seafood 4.76E–08 2 

Soft ripened cheese 2.06E–11 4 

Pasteurised milk 1.00E–08 3 

Frankfurters (reheated) 8.68E–13 5 

Deli meats 3.69E–07 1 

Product Total predicted illnesses/annum in population of interest Ranking 

Smoked seafood 1.95 3 

Soft ripened cheese 0.004 4 

Pasteurised milk 180 2 

Frankfurters (reheated) 0.001 5 

Deli meats 1 033 1 

Product DALYs Ranking 

Smoked seafood 1.2 3 

Soft ripened cheese 0.002 4 

Pasteurised milk 108 2 

Frankfurters (reheated) 0.001 5 

Deli meats 620 1 

sQMRA: swift quantitative microbiological risk assessment. 
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Table 16:  Risk ranking outputs of sQMRA for L. monocytogenes in selected ready-to-eat food 

categories, using the stochastic approach 

Product Mean probability of illness  

per day per consumer of interest 

Ranking 

Smoked seafood 9.6E–08 2 

Soft ripened cheese 2.1E–11 4 

Pasteurised milk 2.7E–08 3 

Frankfurters (reheated) 8.8E–12 5 

Deli meats 1.1E–07 1 

Product Total predicted illnesses/annum  

in population of interest 

Ranking 

Smoked seafood 4 3 

Soft ripened cheese 0.004 5 

Pasteurised milk 500 1 

Frankfurters (reheated) 0.005 4 

Deli meats 307 2 

Product DALYs Ranking 

Smoked seafood 2.4 3 

Soft ripened cheese 0.002 5 

Pasteurised milk 300 1 

Frankfurters (reheated) 0.003 4 

Deli meats 184 2 

sQMRA: swift quantitative microbiological risk assessment. 

 

The output results of sQMRA are provided at a very detailed level, for different steps in the food 

chain. They are therefore very useful to evaluate the impact of using different risk metrics for ranking 

purposes. For a single pathogen in multiple food products, including DALYs and cost-of-illness as risk 

metrics does not affect the ranking; nevertheless, comparing the ranking results for different metrics 

provides important insights. 

3.2.6. FDA-iRISK 

3.2.6.1. Input parameter 

The input parameters of FDA-iRISK were selected based on the dataset presented in Table 17. The 

input parameters in FDA-iRISK can be entered as fixed or variable. When the input has to be 

considered as variable, FDA-iRISK proposes a limited choice of distribution: beta-PERT, empirical, 

normal, triangular and uniform. For some parameters, the options provided by FDA-iRISK for the 

distribution did not match with the dataset. In this case empirical distribution was selected. 
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Table 17:  Input parameters specific to the FDA-iRISK model 

Input parameter Comments 

Prevalence at 

retail 

FDA-iRISK use only fixed values of prevalence 

Concentration at 

retail 

FDA-iRISK can work with parametric distributions (beta-PERT, normal, triangular and 

uniform) and non-parametric distribution: cumulative empirical distribution 

 

For the initial concentration, it was assumed that the concentrations of log10 CFU/g 

follow normal distribution with the parameters: 

 

Foods Mean SD 

Smoked seafood 2.46 0.987 

Soft ripened cheese 1.15 0.601 

Pasteurised milk 0.57 0.48 

Frankfurters (reheated) 5.58 0.91 

Deli meats 2.42 1.02 
 

Growth during 

domestic storage 

FDA-iRISK accepts direct input of log-growth fixed values or distributions 

The growth was first calculated according to an exponential growth model with a gamma 

model for the impact of temperature on the growth rate (as described in Table 14 in 

sQMRA inputs parameters). As the temperature and duration of storage vary between 

consumers, a Monte Carlo simulation model was run to obtain a cumulative empirical 

distributions of log10 growth (Figure 4) 

Reduction during 

cooking 

FDA-iRISK accepts direct input of log-reduction fixed values or distributions 

We used a cumulative empirical distribution to describe the variability of log-reduction 

during cooking of frankfurters 

Consumption Portion size: 

As gamma distribution is not implemented in FDA-iRISK, the cumulative empirical 

distributions of the gamma distributions with parameter a and b were first calculated (see 

Table 5) 

 

Eating occasions per year are fixed values in FDA-iRISK 

DALYs/cost-of-

illness 

Direct inputs as specified 

Dose–response r-value for dose–illness model as specified 

DALY: disability-adjusted life years; SD: standard deviation; sQMRA: swift quantitative microbiological risk assessment. 

3.2.6.2. Risk ranking outputs 

Table 18 presents the FDA-iRISK output results using the deterministic approach. The ranking order 

obtained with FDA-iRISK using the DALY metrics was: deli meats, pasteurised milk, smoked 

seafood, soft ripened cheese and frankfurters. 

Table 18:  Risk ranking outputs of FDA-iRISK for L. monocytogenes in selected ready-to-eat food 

categories using the deterministic approach 

Product 
Mean probability of illness per day per consumer of 

interest 

Ranking 

Smoked seafood 4.76E–08 2 

Soft ripened cheese 2.06E–11 4 

Pasteurised milk 1.00E–08 3 

Frankfurters (reheated) 8.68E–13 5 

Deli meats 3.69E–07 1 
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Table 18:  Risk ranking outputs of FDA-iRISK for L. monocytogenes in selected ready-to-eat food 

categories using the deterministic approach (continued) 

Product Total predicted illnesses/annum in population of interest Ranking 

Smoked seafood 1.95 3 

Soft ripened cheese 0.004 4 

Pasteurised milk 180 2 

Frankfurters (reheated) 0.001 5 

Deli meats 1 033 1 

Product DALYs Ranking 

Smoked seafood 1.2 3 

Soft ripened cheese 0.002 4 

Pasteurised milk 108 2 

Frankfurters (reheated) 0.001 5 

Deli meats 620 1 

DALY: disability-adjusted life years. 

 

Table 19 presents the FDA-iRISK output results using the stochastic approach. The order obtained 

with FDA-iRISK using the DALY metrics was pasteurised milk, deli meats, smoked seafood, 

frankfurters and soft ripened cheese. 

Table 19:  Risk ranking outputs of FDA-iRISK for L. monocytogenes in selected ready-to-eat food 

categories using the stochastic approach 

Product Mean probability of illness per day per  

consumer of interest 

Ranking 

Smoked seafood 6.25E–06 1 

Soft ripened cheese 2.06E–11 5 

Pasteurised milk 5.10E–07 2 

Frankfurters (reheated) 1.40E–10 4 

Deli meats 3.15E–07 3 

Product Total predicted illnesses/annum  

in population of interest 

Ranking 

Smoked seafood 256 3 

Soft ripened cheese 0.004 5 

Pasteurised milk 9 180 1 

Frankfurters (reheated) 0.081 4 

Deli meats 882 2 

Product DALYs Ranking 

Smoked seafood 154 3 

Soft ripened cheese 0.002 5 

Pasteurised milk 5 508 1 

Frankfurters (reheated) 0.049 4 

Deli meats 529 2 

DALY: disability-adjusted life years. 

3.2.7. Burden of Communicable Diseases in Europe (BCoDE) 

3.2.7.1. Input parameters 

There are currently no attribution data at the EU level for the proportion of listeriosis that is food 

borne, or the foods associated with food-borne listeriosis. Therefore, using BCoDE in a top-down 

approach is not currently possible. Therefore, the BCoDE toolkit was used in combination with a 

bottom-up tool, i.e. the number of cases as predicted by the sQMRA model, currently considered as 

the tool that most precisely reflects the outputs of an unconstrained model. 
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The following adaptations from the sQMRA output were made: study population was considered to be 

men and women ≥ 65 years of age (13 % of overall population, 32 400 000), which we redistributed to 

the five age categories according to the EU population, for both men and women; the numbers of cases 

resulting from the sQMRA output (total predicted illnesses/annum) were distributed to the TESSy-

notified cases of listeriosis in men and women ≥ 65 year of age (five age groups for each sex). The 

other main denominator, life expectancy, remained the same. 

We input in the BCoDE toolkit the resulting incidence tables and set for 1 000 iterations; hence, the 

Monte Carlo simulation was run 1 000 times. 

3.2.7.2. Risk ranking output 

The ranking of the BCoDE toolkit is based on the number of cases of listeriosis as a result of the 

different foods. Absolute amount of DALYs, DALYs per 100 000, YLD and YLL per 100 000 can be 

expressed as a mean and median, as well as uncertainty intervals (2.5th and 97.5th percentiles). The 

following outputs are based on the ≥ 65 years of age population and are the median results only (Table 

20). 

Table 20:  Risk ranking outputs according to the BCoDE for L. monocytogenes in selected ready-to-

eat food categories  

Product DALYs per 100 000 Ranking 

Smoked seafood 0.04 3 

Soft ripened cheese 3.45289E–05 5 

Pasteurised milk 4.58 1 

Frankfurters (reheated) 4.67141E–05 4 

Deli meats 2.81 2 

Product DALYs Ranking 

Smoked seafood 11.9 3 

Soft ripened cheese 0.011 5 

Pasteurised milk 1 483 1 

Frankfurters (reheated) 0.015 4 

Deli meats 910 2 

Product YLD per 100 000 Ranking 

Smoked seafood 0.002 3 

Soft ripened cheese 2.03E–06 5 

Pasteurised milk 0.27 1 

Frankfurters (reheated) 2.73E–06 4 

Deli meats 0.16 2 

Product YLL per 100 000 Ranking 

Smoked seafood 0.03 3 

Soft ripened cheese 3.25E–05 5 

Pasteurised milk 4.31 1 

Frankfurters (reheated) 4.40E–05 4 

Deli meats 2.64 2 

DALY: disability-adjusted life years; YLD: years lived with disability; YLL: years of life lost as a result of premature 

mortality. 

 

3.2.8. Comparison of the different tools 

3.2.8.1. Comparison of risk metrics 

The overall results of the reference risk assessment model and the different risk ranking tools for the 

L. monocytogenes case study in RTE foods are presented in Table 22. As shown in Table 22, there are 

significant deviations between the outputs of the different tools and the baseline models as well as 

among the tools. This can be attributed to the differences among the tools described in Section 2 

related to the risk metrics, the ranking approach, the model type, the model variables and data 
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integration method. In the following paragraphs, a comparative analysis is performed in order to 

identify the sources of the differences between the outputs of the different tools and the baseline 

models. 

A comparison in the probability of illness per serving estimated from the reference model and the 

bottom-up tools FDA-iRISK, sQMRA, microHibro and Risk Ranger is presented in Figure 5. 

 

Figure 5:  Comparison between the mean probabilities of illness per serving estimated from the 

reference model and the bottom-up tools FDA-iRISK, sQMRA, microHibro and Risk Ranger 

The FDA-iRISK provided, in general, higher probabilities of illness per serving than the baseline 

model for all tested products that, according to the dataset used, support growth during storage (i.e. 

smoked seafood, pasteurised milk, frankfurters and deli meats). The higher predicted probabilities 

from FDA-iRISK can be attributed to the fact that the current version of the tool does not take into 

account a maximum population density of the pathogen. As a result, the summation of the initial 

concentration and the growth during storage may result in unrealistically high concentrations of the 

pathogen at the time of consumption and thus to higher probability of illness per serving. This can be 

seen in the case of soft ripened cheese in which Listeria cannot grow and the output of FDA-iRISK is 

identical to that of the baseline model since the maximum population density is less important. 

The outputs of sQMRA were the closest to the reference model. This shows that the tool includes all 

the main factors affecting risk and follows the risk assessment paradigm respecting the laws of 

probability and calculus. 

Significant deviations were observed between the outputs of microHibro and the reference model. 

These differences can be mainly attributed to the calculations of the mean probabilities of illness per 

serving. microHibro uses a log scale in the calculation so it actually provides the mean of the log 

probability of illness, which can be significantly different from the arithmetic mean of the probability 

of illness. Another source of these deviations is the fact that, owing to the Monte Carlo process that is 

run within the tool, in microHibro a small number of iterations was used. 

Risk Ranger is also based on the bottom-up approach but the model type is deterministic. Risk 

Ranger provided, in general, lower values for the probability of illness per serving than did the 

reference model. This is mainly because this tool uses single values of the input parameters and does 

not take into account their variability. Another reason is that Risk Ranger does not use a full dose–
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response relationship. Instead, a threshold value is assumed for the contamination level that would 

cause infection or intoxication to the average consumer, without taking into account variability in the 

dose–response. In addition, for some input parameters, the options for their value provided in the risk 

spreadsheet are limited. In this case, the offered option with the closest value to input data was 

selected. 

Figure 6 presents a comparison between the deterministic outputs of the reference model and FDA-

iRISK, sQMRA and Risk Ranger. microHibro is not included in the comparison because the tool 

cannot take into account initial prevalence in deterministic mode. The deterministic outputs of FDA-

iRISK and sQMRA were identical, with the baseline models indicating that the differences are 

associated with incorporation of the variability of input parameters. The outputs of Risk Ranger were 

still different from the baseline model for the reasons explained above but the deviations were smaller 

than in the stochastic baseline model. 

 

Figure 6:  Comparison of the deterministic estimation of the probability of illness per serving 

between the baseline model the Risk Ranger, FDA-iRISK and sQMRA 

EFoNAO and decision tree tools provide ordinal or categorical risk metrics and thus cannot be 

compared with the other tools. 

In this case study, BCoDE was applied as a DALY calculator using the probability of illness estimated 

by the sQMRA as input parameter. As shown in Table 22, the DALY outputs of BCoDE were similar 

but not identical to those estimated by sQMRA, reflecting the different approach in DALY estimation. 

3.2.8.2. Comparison of risk rankings 

The output of the tested tools can be used to rank the risk and compare the ranking for the different 

tools. However, risk ranking requires a selection of a risk metric for each tool. The results of the 

present case study showed that even for the same tool the risk ranking can differ significantly for 

different risk metrics. An example is shown in Table 21, where the risk ranking from FDA-iRISK and 

sQMRA based on the mean probability of illness and total predicted illnesses/annum in population of 

interest are presented. For both tools the ranking changed for the different risk metrics. 
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Table 21:  Risk ranking from FDA-iRISK and sQMRA based on the mean probability of illness and 

total predicted illnesses/annum in population of interest 

 

FDA-iRISK sQMRA 

Probability of 

illness/serving 
Total illnesses 

Probability of 

illness/serving 

Total 

illnesses 

Smoked seafood 2 3 2 3 

Soft ripened cheese 4 4 4 5 

Pasteurised milk 3 2 3 1 

Frankfurters 5 5 5 4 

Deli meats 1 1 1 2 

 

An overall comparison of the rankings provided by the different tools is presented in Figure 7. The 

rankings are based on DALYs for FDA-iRISK, sQMRA, microHibro, Risk Ranger and BCoDE, on 

the sum of scores for EFoNAO and on the categorisation of risk for the decision tree. The figure 

shows clearly that the ranking is significantly affected by the ranking approach, the model type, the 

model variables and data integration method. 

 

Figure 7:  Overall comparison of the rankings provided by the different tools 
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Table 22:  Output overview of the tested tools for the risk ranking of L. monocytogenes in selected ready-to-eat food categories  

Tool/risk metric 
Product 

Smoked seafood Soft-ripened cheese Pasteurised milk Frankfurters (reheated) Deli meats 

Reference model 

Probability of illness/serving 1.83–07 2.05E–11 4.15E–08 5.15E–12 1.88E–07 

Total illnesses 7.51 0.004 747 0.003 526 

DALYs 4.51 0.002 448 0.002 316 

Risk Ranger 

Probability  of illness/serving 1.86E–09 2.44E–13 1.50E–08 5.84E–14 3.18E–07 

Total illnesses 22 0.003 178 0.001 3 767 

DALYs(a) 13.2 0.002 106.8 0.0006 2.26 

FDA-iRISK 

Probability  of illness/serving 6.25E–06 2.06E–11 5.10E–07 1.40E–10 3.15E–07 

Total illnesses 256 0.004 9 180 0.08 882 

DALYs 154 0.002 5 508 0.05 529 

sQMRA 

Probability  of illness/serving 9.60E–08 2.1E–11 2.70E–08 8.80E–12 1.10E–07 

Total illnesses 4 0.004 500 0.005 307 

DALYs 2.4 0.002 300 0.003 184 

EFoNAO 

Total Score 16 14 17 20 21 

microHibro 

Probability of illness/serving 2.89E–09 3.77E–10 2.69E–09 6.16E–13 8.38E–09 

Total illnesses 0.12 0.07 48 0.0004 23.5 

DALYs 0.07 0.04 29 0.0002 14.1 

Decision tree 

Risk evaluation High Low High Moderate High 

BCoDE 

DALYs 11.87 0.01 1 483 0.015 910 

DALY: disability-adjusted life years. 

(a): DALYs were estimated manually by multiplying the total number of illnesses per annum by the DALYs per illness case. 
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3.3. Application of the available tools to rank the risk of multiple pathogens in leafy greens 

3.3.1. Input parameters used 

The available tools FDA-iRISK, Risk Ranger, sQMRA, EFoNAO-RRT, decision trees and BCoDE 

were also evaluated through a second case study on risk ranking of multiple pathogens in leafy greens. 

The objective of the exercise was again to evaluate the different tools using the same dataset, identify 

problems in using and evaluate the performance of each tool using specific criteria. The following 

seven pathogens were considered relevant for leafy greens and included in the case study: 

 STEC 

 Salmonella 

 L. monocytogenes 

 Campylobacter 

 Norovirus 

 Cryptosporidium 

 Giardia 

Available data from the literature were collected to generate a common dataset for all tools. As in the 

case of the Listeria case study, the objective of this exercise was not to assess the risk but to compare 

the different tools using a common realistic dataset. These data are presented in detail in Tables 23 to 

27. 

Table 23:  Initial prevalence and concentration of pathogens in leafy greens (derived from Robertson 

and Gjerde, 2001; Baert et al., 2011; Wijnands et al., 2014)  

Pathogen Prevalence (%) Initial concentration (CFU/g) 

STEC 0.54 0.052 

Salmonella 0.17 0.024 

L. monocytogenes 1.77 250 

Campylobacter 0.083 0.024 

Norovirus 0.165 100 

Cryptosporidium 4 0.03 

Giardia 2 0.025 

 

The above parameters were used as input in the tools evaluated to rank the risk of the seven pathogens. 

Where necessary, parameters were translated according to the requirements of each tool. In addition, 

for the quantitative tools FDA-iRISK, sQMRA and microHibro, variability was taken into account for 

the following input parameters (Tables 24 to 27). 

Table 24:  Cardinal model parameters for the growth of STEC, Salmonella and L. monocytogenes 

during storage (derived from Rosso et al., 1993; Koseki and Isobe, 2005a, b). For the rest of pathogens 

no change in the concentration during storage was assumed. 

Cardinal parameters STEC Salmonella L. monocytogenes 

Tmin 4.9 5.7 1.72 

Tmax 41.3 40 37 

Topt 47.5 49.3 45.5 

mopt 2.5 1.96 0.76 
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Table 25:  Cumulative probability of the storage time for leafy greens (Marklinder et al., 2004) 

 

 

The storage temperature was defined with a gamma distribution with the following parameters: 

a = 7.15, b = 1.03, min = 1.8, max = 18.2. 

Table 26:  Cumulative probability of serving size for leafy greens (derived from Carrasco et al., 

2010) 

Serving size (g) Probability 

25 0 

28 0.5 

55 0.75 

123 0.95 

200 1 

Table 27:  Dose–response parameters used in the leafy greens case study 

Hazards Type p1 p2 Dose response 

type 

Probability 

(illness| 

infection) 

References 

Campylobacter Beta Poisson 1.45E–01 7.59E+00 Infection 33 % (FAO/WHO, 

2009) 

Cryptosporidium Exponential 5.73E–02  Infection 10 % (Teunis et al., 

2002) 

Giardia Exponential 1.99E–02  Infection 10 % (Teunis et al., 

1996) 

L. monocytogenes Exponential 8.40E–12  Illness  (U.S. FDA, 

2003) 

Norovirus Exponential 5.00E–01  Illness 10 % (Teunis et al., 

2008) 

Salmonella Beta Poisson 1.32E–01 5.15E+01 Illness  (FAO/WHO, 

2002) 

STEC Exponential 1.13E–03  Illness  (Strachan et 

al., 2005) 

p1 = alpha; p2 = beta 

3.3.2. Qualitative decision trees 

Two decision trees from the opinion on public health risks represented by certain composite products 

(EFSA Panel on Biological Hazards (BIOHAZ), 2012a) were used for this case study: (1) the decision 

tree related to hazards which usually need to grow in food to cause illness (used for the first case 

study, see Figure 2 and Section 3.2.1) and (2) the decision tree related to hazards which may not need 

to grow in food to cause illness. In this case study, the former was used for L. monocytogenes, while 

the latter was used for the other pathogens. Compared with the decision tree showed in Figure 2, the 

second decision tree does not include a question related to the ability of the food to support the growth 

of the pathogen, as this is not an important parameter to consider for these pathogens. 

Storage time (days) Probability 

0 0 

1 0.61 

2 0.88 

3 0.93 

7 1 
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3.3.2.1. Input parameters 

The decision tree input parameters were selected based on data presented in Tables 23 to 27, Section 

3.3.1. The final input parameters for the seven pathogens selected are shown in Table 28. 

Table 28:  Input parameters of decision trees for the seven pathogens selected 

1. Microbial treatment in package with no recontamination? Qualitative score 

STEC No 

Salmonella No 

L. monocytogenes No 

Campylobacter No 

Norovirus No 

Cryptosporidium No 

Giardia No 

2. Supports growth?  

STEC N.A. 

Salmonella N.A. 

L. monocytogenes Yes 

Campylobacter N.A. 

Norovirus N.A. 

Cryptosporidium N.A. 

Giardia N.A. 

3. Cooking before consumption?  

STEC No 

Salmonella No 

L. monocytogenes No 

Campylobacter No 

Norovirus No 

Cryptosporidium No 

Giardia No 

N.A.: question not applicable for this pathogen. 

 

3.3.2.2. Risk ranking output 

The ranking of the risk metrics provided by the EFSA opinion on public health risks posed by 

composite foods (2012) is shown in Table 29. The risk was qualified as QPR. Similarly to what was 

discussed in Section 3.2.1.2 for the first case study, since it is considered that there is a possibility for 

growth of the pathogen before consumption, and that proper hygienic conditions may not be assumed, 

the risk should be further qualified as being high for all pathogens. 

Table 29:  Risk ranking outputs according to the decision tree for the seven pathogens in leafy greens 

Product  Risk Ranking (in both cases) 

STEC High 1 

Salmonella High 1 

L. monocytogenes High 1 

Campylobacter High 1 

Norovirus High 1 

Cryptosporidium High 1 

Giardia High 1 

STEC: Shiga toxin-producing Escherichia coli. 



Development of a risk ranking toolbox for the EFSA BIOHAZ Panel 

 

EFSA Journal 2015;13(1):3939 52 

3.3.3. EFSA food of non-animal origin risk ranking tool (EFoNAO) 

3.3.3.1. Input parameters 

The input parameters of the EFoNAO tool are summarised in Table 30. Most of the parameter values 

were extracted from the EFoNAO opinion (EFSA BIOHAZ Panel, 2013) but since some of the 

pathogens were not included in the opinion some data were collected from other sources, as indicated 

in Table 30. 

Table 30:  Input data for case study. Data are from the EFoNAO opinion unless otherwise stated 

 Data Pathogen 

Salmonella Campylobacter STEC Listeria Norovirus Cryptosporidium Giardia 

Criterion 1 No outbreaks 7 0 0 0 24 0 0 

Epidemiologic

al link 

No cases 438 0 0 0 657 0 0 

Score 4 1 1 1 4 1 1 

Criterion 2 No cases   3 741   6 972
(a)

 167 025
(a)

 

Incidence Multiplier 57.5 Not in opinion 209.6  N.A. 193.5 N.A. 

Total cases 7 117 005 9 000 000 784 166  18 852 364 1 349 034 167 025 

Score 3 3 2 1 4 3 3
(b)

 

Criterion 3 DALYs per 

1 000 cases 

49 40
(c)

 143 2 820
(c)

 2.4 2.9 2.1
(c)

 

Public health 

burden 

Score 2 2 3 4 1 1 1 

Criterion 4 IllD50 (log10 

CFU)  

 Not in opinion     

Dose–

response 

Score 3 3 3 2 3 3 3 

Criterion 5 Prevalence < 1 % < 1 % < 1 % > 1 % < 1 % > 1 % > 1 % 

Prevalence of 

contamination 

Score 3 3 3 4 3 4 4 

Criterion 6 Percentage 

consuming 

54.2 54.2 54.2 54.2 54.2 54.2 54.2 

Consumption Score 4 4 4 4 4 4 4 

Criterion 7 Growth 

(log10/g) 

       

 Shelf life 

(days) 

       

Growth 

potential/shelf 

life 

Growth 

score (G) 

3 1 3 3 1 1 1 

Shelf life 

score (S) 

2  2 2    

Sum of G 

and S scores 

5 1 5 5 1 1 1 

Combined G 

and S Score 

3 1 3 3 1 1 1 

IllD50: The dose needed to cause illness in 50 % of exposed humans; STEC: Shiga toxin-producing Escherichia coli. 

(a): TESSy data, 2008. 

(b): Assuming same under-reporting as Cryptosporidium. 

(c): Havelaar et al. (2012). 

3.3.3.2. Risk ranking output 

The ranking provided by the EFoNAO tool of the selected pathogens is shown in Table 31. The tool 

ranked Salmonella as the highest risk, followed by Norovirus. Then, in order of decreasing risk, two 

groups resulted; first, STEC and Listeria, and then, in the lowest risk group, Cryptosporidium, Giardia 

and Campylobacter. 
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Table 31:  Scores and ranking of the selected pathogens in leafy greens as estimated by the EFoNAO 

tool 

Criterion Criterion 

number 

Salmonella 

scores 

Campylobacter 

scores 

STEC 

scores 

Listeria 

scores 

Norovirus 

scores 

Cryptosporidium 

scores 

Giardia 

scores 

Epi-link 1 4 1 1 1 4 1 1 

Incidence 2 3 3 2 1 4 3 3 

Public health 

burden 

3 2 2 3 4 1 1 1 

Dose–

response 

4 3 3 3 2 3 3 3 

Prevalence of 

contamination 

5 3 3 3 4 3 4 4 

Consumption 6 4 4 4 4 4 4 4 

Growth 

potential 

7 3 1 3 3 1 1 1 

Sum score 22 17 19 19 20 17 17 

Rank 1 4 3 3 2 4 4 

3.3.4. Risk Ranger 

3.3.4.1. Input parameters 

The input parameters of Risk Ranger tool were selected based on the dataset presented in Section 3.2. 

For some parameters, the options provided by Risk Ranger for the values did not match with the 

dataset. In this case, the option with the closest value to the dataset was selected. The final input 

parameters related to the risk metric of probability of illness per day per consumer of interest for the 

seven pathogens are shown in Table 32. Unlike for the Listeria example in Section 3.2, in this case the 

first criterion for hazard severity was not included as it is only related necessary to calculate the risk 

ranking output of Risk Ranger and not the probability of illness or the total number of illnesses, which 

were used in the case of leafy greens. 

Table 32:  Input parameters of Risk Ranger for the seven pathogens 

2. How susceptible is the consumer? Score  Numerical
(a)

 

Salmonella GENERAL 1 

Campylobacter GENERAL 1 

STEC GENERAL 1 

L. monocytogenes GENERAL 1 

Norovirus GENERAL 1 

Cryptosporidium GENERAL 1 

Giardia GENERAL 1 

3. Frequency of contamination   

Salmonella Common  0.5 

Campylobacter Common  0.5 

STEC Common  0.5 

L. monocytogenes Common  0.5 

Norovirus Common  0.5 

Cryptosporidium Common  0.5 

Giardia Common  0.5 

4a. Effect of process    

Salmonella RELIABLY ELIMINATES hazards 0 

Campylobacter RELIABLY ELIMINATES hazards 0 

STEC RELIABLY ELIMINATES hazards 0 

L. monocytogenes RELIABLY ELIMINATES hazards 0 

Norovirus RELIABLY ELIMINATES hazards 0 

Cryptosporidium RELIABLY ELIMINATES hazards 0 

Giardia RELIABLY ELIMINATES hazards 0 
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Table 32:  Input parameters of Risk Ranger for the seven pathogens (continued) 

4b. Effect of preparation for meal    

Salmonella NO EFFECT on the hazards 1 

Campylobacter NO EFFECT on the hazards 1 

STEC NO EFFECT on the hazards 1 

L. monocytogenes NO EFFECT on the hazards 1 

4b. Effect of preparation for meal    

Norovirus NO EFFECT on the hazards 1 

Cryptosporidium NO EFFECT on the hazards 1 

Giardia NO EFFECT on the hazards 1 

5. Is there potential for 

recontamination? 

   

Salmonella OTHER 0.0017 

Campylobacter OTHER 0.0083 

STEC OTHER 0.0054 

L. monocytogenes OTHER 0.0177 

Norovirus OTHER 0.00165 

Cryptosporidium OTHER 0.04 

Giardia OTHER 0.02 

6. How effective is the post-

processing control system? 

   

Salmonella WELL CONTROLLED 1.00 

Campylobacter WELL CONTROLLED 1.00 

STEC CONTROLLED  3.00 

L. monocytogenes CONTROLLED  3.00 

Norovirus WELL CONTROLLED 1.00 

Cryptosporidium WELL CONTROLLED 1.00 

Giardia WELL CONTROLLED 1.00 

7. How much increase is required to 

reach an infectious or toxic dose? 

   

Salmonella OTHER  5.05E+01 

Campylobacter OTHER  7.07E+01 

STEC OTHER  3.61E+01 

L. monocytogenes OTHER  1.26E+10 

Norovirus OTHER  3.23E–03 

Cryptosporidium OTHER  8.96E+01 

Giardia OTHER  3.15E+02 

8. Frequency of consumption    

Salmonella Daily 365 

Campylobacter Daily 365 

STEC Daily 365 

L. monocytogenes Daily 365 

Norovirus Daily 365 

Cryptosporidium Daily 365 

Giardia Daily 365 

(a): See Section 2.4.2 for description of risk metrics of the tool. 

 

 

3.3.4.2. Risk ranking output 

The ranking of the illness per day per consumer provided by Risk Ranger is shown in Table 33. 
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Table 33:  Risk ranking outputs of Risk Ranger for the seven pathogens in leafy greens 

Pathogen Probability of illness  

per day per consumer 

Ranking 

Salmonella 7.71E–07 5 

Campylobacter 8.37E–06 3 

STEC 8.90E–08 6 

L. monocytogenes 2.34E–08 7 

Norovirus 7.09E–06 4 

Cryptosporidium 3.17E–04 2 

Giardia 6.24E–04 1 

STEC: Shiga toxin-producing Escherichia coli. 

3.3.5. microHibro 

3.3.5.1. Input parameters 

The input parameters used are those described in Section 3.3.1. 

3.3.5.2. Risk ranking outputs 

The outputs obtained after running the microHibro tool are presented in Table 34. 

Table 34:  Stochastic risk ranking outputs of microHibro for the mean risk per portion of the 

pathogens considered 

Outcomes STEC Salmonella L. monocytogenes Campylobacter Norovirus Cryptosporidium Giardia 

Mean 

probability of 

illness per day 

per consumer 

6.91E–02 4.23E–03 6.81E–10 7.44E–03 1.36E–01 9.58E–03 3.76E–02 

Ranking 

microHibro 
2 6 7 5 1 4 3 

STEC: Shiga toxin-producing Escherichia coli. 

3.3.6. Swift quantitative microbiological risk assessment (sQMRA) 

3.3.6.1. Input parameters 

The input parameters used are those described in Section 3.2. 

3.3.6.2. Risk ranking output 

The outputs obtained after running the sQMRA tool are presented in Table 35. 

Table 35:  Risk ranking outputs of sQMRA for the seven pathogens in leafy greens 

Outcomes STEC Salmonella L. monocytogenes Campylobacter Norovirus Cryptosporidium Giardia 

Mean risk 

per portion 

(sQMRA) 

1.64E–05 5.30E–06 6.64E–09 5.30E–06 1.70E–04 3.11E–04 4.72E–05 

DALYs/ 

1 000 cases 

143 49 1 450 41 2.4 2.9 2.1 

DALYs 

sQMRA 

2.3E–03 2.6E–04 9.6E–06 2.2E–04 4.1E–04 9.0E–04 9.9E–05 

Ranks 

sQMRA 

1 4 7 5 3 2 6 

DALY: disability-adjusted life years; sQMRA: swift quantitative microbiological risk assessment. 
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3.3.7. FDA-iRISK 

3.3.7.1. Input parameters 

The input parameters used are the same as for sQMRA, see Section 3.2.6.1. 

3.3.7.2. Risk ranking output 

The outputs obtained after running the FDA-iRISK tool are presented in Table 36. 

Table 36:  Risk ranking outputs of FDA-iRISK for the seven pathogens in leafy greens 

Outcomes STEC Salmonella L. monocytogenes Campylobacter Norovirus Cryptosporidium Giardia 

Mean risk per portion 7.19E–05 7.99E–06 6.60E–09 4.95E–06 1.65E–04 2.94E–04 4.51E–05 

DALYs/1 000 cases 143 49 1 450 41 2.4 2.9 2.1 

DALYs 0.01 3.9E–04 9.6E–06 2.0E–04 4.0E–04 8.5E–04 9.5E–05 

Ranking 1 4 7 5 3 2 6 

DALY: disability-adjusted life years; STEC: Shiga toxin-producing Escherichia coli. 

 

3.3.8. Burden of Communicable Diseases in Europe (BCoDE) 

3.3.8.1. Input parameters 

In order to estimate the burden of several selected pathogens transmitted from consumption of leafy 

greens, we chose to consider the FDA-iRISK outputs on the predicted number of illnesses per serving 

as the main data source, as this tool provided similar results to the sQMRA tool. For each disease, we 

distributed the FDA-iRISK output according to the age and sex distribution of the notified cases in the 

EU, as used in the BCoDE project. 

Moreover, we corrected the FDA-iRISK outputs to reflect number of illnesses per 1 million servings, 

and used this as the main denominator of the BCoDE toolkit (1 million servings = 1 million 

population). We distributed this population (1 million) across age and sex groups according to 

European demography. 

3.3.8.2. Risk ranking output 

The outputs obtained after running the BCoDE tool are presented in Table 37. It is important to note 

that, at the moment, the BCoDE toolkit is not able to estimate the DALYs of Norovirus as this disease 

is not part of the BCoDE project. However, it will be possible to create ad hoc disease models in a 

simple building block addition to the toolkit. 

Another limitation in this exercise is related to the fact that the BCoDE toolkit only has a model for 

STEC, not a general E. coli model; this might over-estimate the burden of this disease. 
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Table 37:  Risk ranking outputs of BCoDE toolkit for the seven pathogens in leafy greens (the output 

is very similar to that of FDA-iRISK because similar models are used to calculate the DALYs)  

Outcomes 
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Illnesses per 1 

million servings 

(input from 

FDA-iRISK) 

71.9 7.99 0.0066 49.5 N.A. 294 45.1 

DALYs 8.74E+00 3.73E–01 6.52E–02 1.95E+00 N.A. 7.93E–01 1.21E–01 

DALYs per 

100 000 
8.74E–01 3.73E–02 7.57E–03 1.95E–01 N.A. 7.93E–02 1.21E–02 

YLD per 

100 000 
4.88E–01 2.44E–02 6.43E–04 1.75E–01 N.A. 7.89E–02 1.21E–02 

YLL per 

100 000 
3.86E–01 1.29E–02 6.93E–03 1.99E–02 N.A. 4.55E–04 0.00E+00 

DALYs per case 1.26E–01 4.66E–02 4.76E+01 3.94E–02 N.A. 2.70E–03 2.68E–03 

Ranking 

(according to 

DALYs per 

100 000) 

1 4 6 2 N.A. 3 5 

DALY: disability-adjusted life years; STEC: Shiga toxin-producing Escherichia coli; YLD: years lived with disability; YLL: 

years of life lost as a result of premature mortality. 

 

3.3.9. Comparison of the outputs of the risk of multiple pathogens in leafy greens from the 

different tools 

As in the case of the Listeria case study, in order to evaluate the performance of the different tools in 

risk ranking the various pathogens in leafy greens their outputs were compared with a fully 

quantitative reference risk assessment model which takes into account the main factors affecting the 

risk and follows the risk assessment paradigm respecting the laws of probability and calculus. The 

structure of the reference model was the same as used in the Listeria case study and the variability of 

the input parameters was addressed using Monte Carlo simulations using @Risk with 

30 000 iterations. 

3.3.9.1. Comparison of risk metrics 

The overall results of the reference risk assessment model and the different risk ranking tools for the 

case study of the different pathogens in leafy greens are presented in Table 38. 

A comparison in the probability of illness per serving estimated from the reference model and the 

bottom-up tools FDA-iRISK, sQMRA, microHibro and Risk Ranger is presented in Figure 8. 
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Figure 8:  Comparison between the mean probabilities of illness per serving for the different 

pathogens in leafy greens estimated from the baseline model and the bottom-up tools FDA-iRISK, 

sQMRA, microHibro and Risk Ranger 

In contrast to the Listeria case study, in this case FDA-iRISK provided very similar probabilities of 

illness per serving compared with the reference model for all tested pathogens. This can be attributed 

to the fact that in this case study growth of all pathogens during storage is limited and the final 

concentration at the time of consumption does not exceed the maximum population density. As a 

result, ignoring the latter factor by FDA-iRISK does not affect the output. 

The outputs of sQMRA were again almost identical to those of the reference model. The significant 

deviations between the outputs of microHibro and the reference model observed in the Listeria case 

study were confirmed in this case of multiple pathogens in leafy greens. The reasons for these 

deviations remain the calculation problems and the limited number of iterations in Monte Carlo 

simulation performed with this tool. 

As in the Listeria case study, Risk Ranger provided, in general, lower values for the probability of 

illness per serving than did the reference model, mainly because Risk Ranger uses the mean values of 

the input parameters and does not take into account their variability, the simplicity in the dose–

response relationship and the limited options for some input parameters. 

EFoNAO and decision tree tools provide ordinal or qualitative categorical risk metrics and thus cannot 

be compared with the other tools with regard to log probability of illness. 

The BCoDE estimates of DALYs were slightly different from those derived from FDA-iRISK. 

Considering that, in this case study, the input of BCoDE was the number of illnesses per 1 million 

servings estimated by FDA-iRISK, the above differences show the different approach used by BCoDE 

to estimate the DALYs compared with FDA-iRISK. 

3.3.9.2. Comparison of risk rankings 

Figure 9 presents a comparison of the rankings of the different pathogens in leafy greens provided by 

the different tools. The rankings are based on DALYs for FDA-iRISK, sQMRA, microHibro and Risk 

Ranger, on the sum of scores for EFoNAO and on the categorisation of risk for the decision tree. 

BCoDE was not included in the comparison since it does not include a disease model for Norovirus; 
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for the remaining six pathogens the ranking for BCoDE was (1) VTEC/STEC, (2) campylobacteriosis,  

(3) cryptosporidiosis, (4) salmonellosis, (5) giardiasis and (6) listeriosis. 

 

Figure 9:  Overall comparison of the rankings of the different pathogens in leafy greens provided by 

the different tools. The rankings are based on DALYs for FDA-iRISK, sQMRA, microHibro and Risk 

Ranger, on the sum of scores for EFoNAO and on the categorisation of risk for the decision tree 

The reference, the FDA-iRISK and the sQMRA models ranked pathogens identically and in the 

following order: 

STEC > Campylobacter > Cryptosporidium > Norovirus > Salmonella > Giardia > L. monocytogenes 

Excluding Norovirus, the same ranking was also provided by BCoDE, which is probably explained by 

the fact that FDA-iRISK results were used to feed the BCoDE model. 

With microHibro, STEC and L. monocytogenes were also ranked first and last, respectively, but the 

ranking of the rest of the pathogens was completely different. The ranking from Risk Ranger showed 

the highest deviations from the baseline model compared with the other bottom-up tools. EFoNAO 

also provided different rankings from the baseline model and showed limited discriminatory 

capability. The decision tree categorised all of the pathogens as high risk. 

The significant dependence of the risk ranking on the selected risk metrics was confirmed in the case 

study. The following table shows the rankings provided by FDA-iRISK based on the probability of 

illness per serving and DALYs. 
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Table 38:  Output overview of the tested tools for the risk ranking of L. monocytogenes in selected RTE food categories  

Tool/risk metric 
Pathogen 

STEC Salmonella L. monocytogenes Campylobacter Norovirus Cryptosporidium Giardia 

Baseline model 

Probability  of illness/serving 2.35E–05 5.83E–06 3.51E–08 5.22E–05 1.65E–04 3.11E–04 4.81E–05 

DALYs(a) 3.36E–03 2.86E–04 5.09E–05 2.14E–03 3.96E–04 9.01E–04 1.01E–04 

Risk Ranger 

Probability  of illness/serving 8.90E–08 7.71E–07 2.34E–08 8.37E–06 7.09E–06 3.17E–04 6.24E–04 

DALYs(a) 1.27E–05 3.78E–05 3.39E–05 3.43E–04 1.70E–05 9.19E–04 1.31E–03 

FDA–iRISK 

Probability  of illness/serving 7.19E–05 7.99E–06 6.60E–09 4.95E–05 1.65E–04 2.94E–04 4.51E–05 

DALYs(a) 1.03E–02 3.92E–04 9.57E–06 2.03E–03 3.96E–04 8.53E–04 9.47E–05 

sQMRA 

Probability  of illness/serving 1.64E–05 5.30E–06 6.64E–09 5.30E–05 1.70E–04 3.11E–04 4.72E–05 

DALYs(a) 2.35E–03 2.60E–04 9.63E–06 2.17E–03 4.08E–04 9.02E–04 9.91E–05 

EFoNAO 

Total score 19 22 19 17 20 17 17 

microHibro 

Probability of illness/serving 6.91E–02 4.23E–03 6.81E–10 7.44E–03 1.36E–01 9.58E–03 3.76E–02 

DALYs(a) 9.88E+00 2.07E–01 9.87E–07 3.05E–01 3.26E–01 2.78E–02 7.90E–02 

Decision tree 

Risk evaluation High High High High High High High 

BCoDE 

DALYs(a) 8.74E–03 3.73E–04 6.52E–05 1.95E–03 – 7.93E–04 1.21E–04 

DALY: disability-adjusted life years. 

(a): DALYs per 1 000 servings. 
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3.4. Evaluation of tools 

The two application examples on L. monocytogenes in RTE food categories and on multiple pathogens 

in leafy greens allowed for a better understanding of the selected risk ranking tools. Based on the 

above experience, the tools were evaluated according to the following criteria: 

 Risk metrics: the ability of a risk ranking tool to provide different risk metrics with 

meaningful biological or epidemiological interpretation is of great importance. The application 

examples showed that different metrics can lead to different risk rankings. Thus, it is 

important to inform the risk managers on which basis metrics (or risk groups) provide a weak 

scientific basis for risk ranking and may result in misleading outputs. 

 Model structure: realistic risk rankings need to be based on models that follow the risk 

assessment paradigm and respect the laws of probability and calculations. 

 Description of input data: the application examples showed that the accuracy in the description 

of available data as input parameters is an important characteristic of a risk ranking tool. 

 Variability and uncertainty: the importance of variability in risk ranking was confirmed by the 

application examples which showed differences between deterministic and stochastic 

applications of the tools. The inability of all selected tools to describe uncertainty was also 

stressed. 

 User interface: the experience from the use of the different tools showed that the user interface 

is important for effective data management, scenario analysis and documentation of the 

process. 

Decision trees use a qualitative approach which permits risk ranking based on descriptive categories 

of risk (low, moderate, high) with no biological or epidemiological interpretation. The main 

advantages of the decision trees are that they are able to categorise food–pathogen combinations when 

limited information is available and are simple to communicate to risk managers. However, because of 

the structure of the decision trees, it is in practice not possible to include some factors that can 

significantly affect the final risk. For example, the decision trees used in the application examples of 

this opinion—selected from previous EFSA opinions—lack a number of significant risk factors, such 

as the extent of initial prevalence and concentration, extent of growth during storage, the serving size, 

etc. In addition, arbitrary limits need to be defined in order to split data in arbitrary number of 

categories for answering the questions of the trees. The above limitations, in combination with the 

absence of biological or epidemiological interpretation of the risk metric outputs, may result in 

misleading risk ranking. Furthermore, as confirmed by both application examples, the discriminatory 

capabilities of decision trees are very limited compared with semi-quantitative and quantitative tools. 

Uncertainty and variability can be qualitatively described but they are not easily included in the 

outputs of the decision trees. Although there is no actual user interface, the simple structure of the 

decision trees allows for easy data management and scenario analysis. 

EFoNAO is a semi-quantitative risk ranking tool in an Excel spreadsheet form that uses a mixed 

bottom-up and top-down approach. Risk ranking with EFoNAO is based on semi-quantitative risk 

metrics (scores) calculated as the sum of scores of ordinal scoring criteria. The present tool does not 

take into account factors that can significantly affect the final risk, such as the initial contamination 

level and the serving size. As a combined bottom-up and top-down approach, the tool provides an 

evaluation of risk based on certain selected criteria without following the risk assessment paradigm. 

Advantages of the tool are that the scoring system allows for using qualitative or uncertain input data 

and that the multi-criterion model is easy to communicate to the risk managers. However, the missing 

factors that affect the final risk, the ordinal scoring of the criteria, the correlation between some 

criteria and the lack of a biological or epidemiological interpretation of the risk metric outputs may 

lead to erroneous risk rankings. EFoNAO does not take into account uncertainty and variability. The 

Excel spreadsheet requires much manual handling in order to enter, calculate and present results 
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making data management and scenario analysis complex. However, P3ARRT, which is a tool with the 

same structure, has a much more advanced user interface. 

Risk Ranger is a semi-quantitative risk ranking tool based on a bottom-up approach. It provides 

meaningful outputs (risk metrics) such as the probability of illness per day per consumer of interest 

and the total predicted illnesses/annum in population of interest. The main advantage of the tool is that 

it is simple and easy to use. However, there are a number of weak points in the model’s variable and 

data integration. The serving size, which can be an important factor affecting the final risk, is not 

included as an input parameter. Serving size can be taken into account only indirectly in the estimation 

of the increase in the post-processing contamination level that would cause infection or intoxication to 

the average consumer. The maximum population density of pathogens following growth is also not 

considered. As a result, the sum of the initial concentration and the growth during retail and domestic 

storage can be unrealistically high, resulting in over-estimation of risk. Although the model structure 

and data integration follow, in general, the logic of the standard risk assessment paradigm, there are 

some weak points. In particular, data integration is simplistic compared with full sQMRA models. For 

example, a threshold value is assumed for the contamination level that would cause infection or 

intoxication to the average consumer without taking into account the actual dose–response 

relationship. For some input parameters the options for their value provided in the risk spreadsheet are 

limited. In this case, the offered option with the closest value to data must be selected but this can 

affect the risk ranking. The current version of Risk Ranger is deterministic and does not take into 

account variability and uncertainty. However, the Excel form of the tool provides flexibility and it 

could be combined with other software such as @Risk for taking into account variability/uncertainty 

using Monte Carlo simulation. Guillier et al. (2013) extended Risk Ranger towards a probabilistic 

version, distinguishing uncertainty and variability. However, this version requires an expert elicitation 

procedure in which the expert is asked for two quantiles to assess variability as well as given quantiles 

to incorporate an uncertainty level. Data management and scenario analysis with Risk Ranger is 

complex. Each scenario (pathogen–product pair and/or differences in input parameters) requires a 

different file to be stored which complicates quality assurance evaluation and comparison of different 

scenarios. 

FDA-iRISK is a quantitative, bottom-up risk assessment tool providing meaningful risk metrics such 

as the probability of illness per serving, the total annual number of illnesses and DALYs, which can be 

used for risk ranking. The main weak point of the current version of FDA-iRISK is that it does not 

take into account the maximum population density of pathogen’s growth, which may result in an 

unrealistically high concentration of the pathogens at the time of consumption and over-estimation of 

risk. Apart from the above weakness, the tool takes into account the main factors affecting the risk and 

follows the risk assessment paradigm respecting the laws of probability and calculus. The user can run 

the tool in both a deterministic and a stochastic way. For the stochastic applications, various 

probability distributions are available for describing input data (fixed, normal, beta-PERT, uniform, 

triangular, uniform and empirical cumulative distribution). The tool accepts only input data describing 

the increase or decrease of concentration and prevalence, while specific growth or inactivation models 

have to be run outside the tool. An advantage of FDA-iRISK is that the number of iterations is 

automatically selected based on simulation convergence criteria and not settled before by the user. All 

probability distributions are assumed to describe variability since the current version does not include 

uncertainty. The FDA-iRISK tool has the more advanced user interface among the tested tools in this 

opinion. It is capable of modelling different steps in the food chain from farm to fork providing 

flexibility in choosing different scenarios combining hazards, consumption patterns and processing 

stages. In addition, each model run can be saved and shared online with other users, allowing effective 

quality assurance evaluation and comparison of different scenarios. 

sQMRA is a quantitative, bottom-up risk assessment tool in an Excel spreadsheet form that can be 

used for risk ranking based on various meaningful risk metrics including probability of illness per 

serving, total annual number of illnesses, DALYs and cost-of-illness. sQMRA takes into account all 

the factors affecting the risk and follows the risk assessment paradigm respecting the laws of 

probability and calculus. The tool can provide both deterministic and stochastic outputs for risk 
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ranking using single values or distributions for the input parameters, respectively. However, in the 

latter case only a limited number of probability distributions is available for describing these data. This 

limitation may lead to erroneous ranking outputs when input data are not in a form that can be 

described by an available probability distribution. An advantage of the tool is that growth of the 

pathogens during storage can be estimated within the tool using the appropriate parameters in a 

secondary cardinal model. In the stochastic application, the number of iterations in the Monte Carlo 

simulation procedure has to be settled in advance without taking into account simulation convergence 

criteria. This may result in differences in the outputs for different number of iterations and between 

different simulations. All probability distributions in sQMRA are assumed to describe variability since 

the current version does not include uncertainty. The Excel spreadsheet form of the tool provides an 

informative summary of input data and allows for adequate checks on input validity. However, a weak 

point of the tool is that the spreadsheet form makes file management very complex with each scenario 

(pathogen–product pair and/or differences in input parameters) requiring a different file to be stored 

which complicates quality assurance and comparison of different scenarios. 

microHibro was initially developed as a microbial growth prediction tool, but with recent 

developments the model can be used for quantitative risk assessment and risk ranking. In its current 

form, the tool can estimate only the probability of illness and the number of illnesses. It takes into 

account all the factors affecting the final risk following the risk assessment paradigm and respects the 

laws of probability and calculus. The user can run the tool only in a stochastic way since the 

deterministic application cannot take into account the prevalence of the pathogens. Various probability 

distributions are available for describing input data (normal, gamma, uniform, exponential, triangular, 

Poisson). An advantage of microHibro is that growth or inactivation of the pathogens can be estimated 

within the tool using the appropriate growth model. In the stochastic application, the number of 

iterations in the Monte Carlo simulation procedure has to be set in advance, without taking into 

account simulation convergence criteria. In the current version of the tool, the Monte Carlo process is 

very slow and may result in differences in the outputs for different number of iterations and between 

different simulations. All probability distributions are assumed to describe variability since the current 

version does not include uncertainty. The microHibro has an advanced user interface and the user can 

design any step in the food chain from farm to fork. The advanced interface allows for effective data 

management and analysis of different scenarios combining hazards, consumption patterns and 

processing stages. Furthermore, both risk assessment and growth/inactivation models can be saved and 

shared online with other users. However, the development for a risk assessment application is in 

progress and there is a need for further improvements in the calculations and the presentation of the 

results. 

BCoDE is a full top-down risk ranking tool that provides meaningful outputs such as DALYs, DALYs 

per case, DALYs per 100 000, YLD and YLL per 100 000. Risk ranking with BCoDE is based on a 

limited number of input parameters, namely the age group- and sex-specific number of cases, which 

reduces complexity of the tool. Flexibility is ensured by the possibility of changing all other 

parameters, such as population data (as in the listeriosis case study of this opinion), life expectancy 

and all parameters of the disease models (disability weights, transition probabilities and durations). 

Variability and uncertainty of all variables (number of cases, disease model variables, population data) 

are taken into account using Monte Carlo simulations (up to three inputs are possible for each 

variable) and outputs include mean, median, 2.5th and 97.5th percentiles. BCoDE has an advanced, 

user-friendly and intuitive interface that allows effective data management and scenario analysis while 

outputs are presented in communication-friendly visualisations such as tables, bubble charts and bar 

charts. However, BCoDE is able to estimate DALYs only from incidence data and does not take into 

account transmission pathways: translation of source attribution to incidence must be performed 

beforehand by the user. For a more specific application in a food safety context, incidence estimates 

are needed at a higher level of resolution, i.e. for specific food or group of foods within population 

subgroups. These estimates can be provided by attribution models which are not currently included in 

the tool. Alternatively, as we show in the application case study of this opinion, BCoDE can be used in 

combination with a bottom-up risk ranking tool. In this case, the number of illnesses for a specific 
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food or food category estimated with a bottom-up approach can be used as an input in BCoDE for a 

more effective estimation of DALYs. 

4. Comparison of general risk ranking approaches: stochastic, deterministic and ordinal 

scoring 

The risk ranking tools evaluated in this opinion are based on different approaches including 

qualitative, semi-quantitative with ordinal scoring, quantitative deterministic and quantitative 

stochastic. Because of the additional differences found between the tools other than the approach (see 

Section 2), their comparison presented in Section 3 cannot provide adequate information about the 

performance of the above approaches in risk ranking. In addition, there are no studies available in the 

literature providing a comparative evaluation of these approaches. The objective of this section was to 

systematically compare stochastic, deterministic and ordinal scoring approaches in risk ranking. 

4.1. Methodology of comparison 

For the purpose of comparison of the different approaches, a generic stochastic risk assessment model 

from retail to consumption was defined. A probability distribution was selected for each variable of 

the model for the description of variability. In each parameter of the above distributions, a range of 

values was assigned to cover different food hazards characteristics. By randomly selecting a value 

from the above ranges, a dataset of the model input parameters for food–pathogen combinations can 

be generated. Several hundreds of datasets representing a corresponding number of food–pathogen 

combinations were generated and the risk of each combination was estimated using stochastic, 

deterministic and ordinal scoring approaches. In the stochastic approach, the variables of the model 

were described with probability distributions and the final risk was estimated using Monte Carlo 

simulation. In the deterministic approach, the variables of the model were described with single values 

using different statistical measures (i.e. arithmetic mean, median, 75th percentiles and 90th percentiles) 

for comparison. For the ordinal scoring approach, a score was assigned to the variables of the model 

based on their categorisation on a continuous scale. The overall score was obtained by summing the 

scores assigned to each variable. 

The ranking of the food–pathogen combinations derived from the different approaches were compared 

both graphically and using appropriate statistical measures. Assuming that the stochastic approach 

provides the most realistic outputs since it takes into account the variability of the risk determinants, 

the deterministic and ordinal scoring approaches were evaluated in relation to the stochastic one. 

4.1.1. Generic risk assessment framework 

There are many ways in which risk, and the individual factors of risk, have been defined and 

evaluated. When reliable quantitative data are available, quantitative multiplicative mathematical 

model may be used to estimate risk. From retail to consumption, the changes in concentration of 

pathogens in the food are described using the available predictive microbiology models in 

combination with the probability distributions of the temperatures of the food during transport and 

storage of the food product. During storage and preparation, microorganisms present in one food 

product can be transferred to a RTE food (cross-contamination). The range of possible transfer rate 

values depend on the food characteristics and food handling by the consumer. Hoelzer et al. (2012) 

synthesised available data and derived probability distributions and mathematical models of bacterial 

transfers between food and environmental surfaces and vice versa. When food products are cooked, 

the survival of microorganisms is described thanks to the available predictive models in combination 

with the probability distribution of temperatures and durations of cooking. To assess the concentration 

at time of consumption from this series of distributions, Monte Carlo simulations are performed. The 

exposure dose, number of pathogen cells in an ingested serving, is determined from the final 

concentration of pathogens reached after the accumulated growth or survival calculated at each step 

and the quantity of food product. A dose–response model is then applied to calculate the probability of 

infection/illness from that number of pathogen cells in a single serving. The total number of illnesses 

in a population can be calculated by multiplying the mean probability of illness per serving by the total 
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number of servings consumed by the population. Finally, the public health impact can be estimated by 

translated the total number of illnesses in DALYs. 

The structure of the generic risk assessment framework is represented in the Figure 10. Models 

following this generic framework predict, from the initial contamination level (at the time the products 

leave the retail stores), the potential amount of microbial hazard to be consumed under a wide range of 

situations. To cover all relevant situations, a stochastic modelling approach is used, where variable are 

included and described by probability distributions of possible values rather than a single estimate 

(Table 39). At this stage only variability is included and the parameters of the probability distributions 

were assumed as perfectly known. 

 

DALY: disability-adjusted life years. 

Figure 10:  Risk assessment framework and inputs 

The generic risk assessment framework assumes the following: 

 Initial contamination at retail level (H0): characterised by three parameters, p (prevalence, 

proportion of contaminated food product units), 0 (mean of the concentration in food in 

log10 CFU/g or ml) and 0 (the standard deviation of concentration in food in log10 CFU/g or 

mL). The concentration is assumed to be log-normally distributed. 

 Change in concentration during transport to home and storage: (G) characterised by a log-

gamma distribution with parameters G and G and derived from a predictive model with 

maximum population density. 

 Cross-contamination during preparation (C): characterised by a log-normal distribution with 

parameters c and c. It is assumed that a fraction of the microbial hazards present in the 

handled food product unit is transferred to a RTE food and all the transferred amount of the 

microorganism will be ingested by the consumer. 
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 Change in concentration during preparation (e.g. cooking) (R): assumed to be log-normally 

distributed with parameters R and R. 

 Portion size (S): characterised by a gamma distribution with a mean and standard deviation 

noted respectively as S and S. 

 Dose–response model: an exponential dose–response model with fixed parameter r is used. 

 Consequence function: average DALYs per case is used. 

 Population at risk: we used the average number of eating occasions per year per person. 

The mathematical equations and their combinations are presented in Table 39. 

Table 39:  Generic risk assessment framework description 

Variables Unit Distribution/formula Input parameters 

Initial concentration (H0) Log10 CFU/g Normal 0 and 0 

Portion size g Gamma (,) 
 

Expected CFU per portion (E0) CFU/portion   

Increase during storage (G)(a) Log10 Gamma (a,b) 
 

Expected CFU per portion end of 

storage (ES) 

CFU/portion   

CFU per portion end of storage (XS) CFU/portion Poisson (Es)  

Log10 probability of transfer to RTE 

(C) 

Log10 Normal c and c 

CFU transferred per portion (D1) CFU/portion Binomial (Xs, 10C)  

CFU remaining per portion (Xnc) CFU/portion Xnc = Xs – D1  

Log10 probability of survival during 

cooking 

Log10 Normal R and R 

CFU surviving cooking (D2) CFU/portion Binomial (Xs, 10R)  

Probability of infection (PInf)  PInf = 1 – (1 – r)(D1 + D2) r 

Probability of illness (PIll)  PIll = PInf × P(Ill | infection) P(Ill | infection) 

Average probability of illness 

(APIll) per contaminated serving  

 Arithmetic mean of probability of illness (Monte 

Carlo simulation, 50 000 iterations) 

Annual probability of illness (API)   API = P × APIll × FR FR: average number 

of eating occasion per 

year per person 

P: prevalence 

Annual DALYs per 1E6 consumers  ADALY=API × DALY × 1E6 

consumers 

DALY per case 

DALY: disability-adjusted life years. 

(a): Based on relevant predictive modelling. 

4.1.2. Generation of datasets for food–pathogen combinations 

In order to describe the differences in the various food–pathogen combinations, a range of values was 

given to each input parameter of the variables in the generic framework presented in Table 39. The 

ranges of values of the parameters are shown in Table 40. By randomly selecting a value from the 

above ranges, a dataset of the input parameters for each food–pathogen combination was generated. 

Initially, 700 datasets representing a corresponding number of food–hazards combinations were 

generated. Further, the risk for these 700 combinations was assessed using a stochastic modelling 

approach, which followed the generic framework presented in Figure 10. The results showed that, for 

some food–pathogen combinations, the estimated risk was unrealistically high or low. In order to 

make the example more realistic, 392 out of the total 700 combinations were selected and included in 
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the analysis, for which the final risk of illness per year per person was between 10–12 and 0.8, and the 

corresponding DALYs were lower than 300 per 1 000 000 persons per year. This DALY reference 

was obtained using the reported salmonellosis incidence rate, 22/100 000 cases (EFSA and ECDC, 

2014) and combining it with an average DALY value of 49/1 000 and an underreporting factor of 30. 

Table 40:  Range of parameters to generate input data for food–pathogen combinations in the 

stochastic model used 

Variables Unit Parameters 
Ranges of the 

parameters values 

Initial concentration (H0) Log10 CFU/g 0 

0 

–3 to 3 

0.1 to 1.5 

Prevalence  P 10–4 to 1 

Portion size g s 

s 

10 to 500 

0.1 to 1 

Increase during storage (G) Log10 g 

g 

0.3 to 3 

0.1 to 1.5 

Log10 probability of transfer to RTE 

(C) 

Log10 c 

c 

–5 to –2 

0.1 to 1.5 

Log10 probability of survival during 

cooking 

Log10 R 

R 

–6 to –3 

0.1 to 1.5 

If RTE product (50 % 

of the simulated 

scenario R = 0) 

Probability of infection (PInf per 

CFU) 

 r – 10 to – 2 

Probability of illness (PIll)  PIll = PInf × P(Ill | 

infection) 

1 

Average number of eating occasions 

per year per person 

 FR 1 to 365 

DALY per case  Year (log10) DALY –3 to 1 

DALY: disability-adjusted life years. 

4.1.3. Risk ranking comparison 

The stochastic approach was considered as the reference risk ranking approach and the deterministic 

and ordinal scoring approaches were evaluated by comparing their rankings with that of the stochastic 

approach. 

Both the Spearman rank correlation coefficient and Kendall’s tau correlation coefficient were used 

measures for comparing the rankings. Spearman rank correlation coefficient was first proposed as a 

non-parametric rank statistics to measure the strength of association between two variables. It is 

defined as: 

𝑟 = 1 −  
6

𝑁3 −  𝑁
∑ 𝑑𝑖

2

𝑁

𝑖=1

 

where di is the difference between the ranks of items i and N is the number of ranked items. Two 

rankings are identical when the coefficient is 1, and in inverse order when the coefficient is –1. 

The Kendall’s tau rank correlation coefficient is defined as: 

𝜏 = 2 𝑝 − 1 

𝑝 =
𝐶

𝑁(𝑁 − 1)/2
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where C is the number of concordant pairs (pairs that are ranked in the same order in both rankings) 

and N is the number of ranked items. Note that if two rankings are identical (p = 1), then Kendall’s tau 

value is 1, whereas, if the two rankings totally disagree (p = 0), then Kendall’s tau value is –1, and if 

the two rankings are independent (p = 1/2), then Kendall’s tau value is 0. 

Kendall’s tau can be used to find which method is better relative to “gold standard”. The higher 

Kendall’s tau value that measures the correlation between the output ranking of a method and the gold 

standard, the better the method is concluded to be. Pairs of ranking whose Kendall’s tau value are 

equal or higher than 0.9 can be considered “effectively equivalent”. 

Although Kendall’s tau is considered as a useful measure for comparing two rankings, there is an 

important problem with this statistic. Kendall’s tau equally penalises errors that occur at any part of 

the ranked list. Therefore, Kendall’s tau does not distinguish between the errors that occur towards the 

top of the list from the errors towards the bottom of the list. Since the food–pathogen pairs that are 

placed at the top of the list are more important than those towards the bottom, there is a need to find a 

measure that assigns more weight to the errors made towards the top of ranking than to the errors 

towards the bottom. Yilmaz et al. (2008) proposed a new rank correlation coefficient based on the 

principle of average precision. 

The average precision (AP) rank correlation coefficient is calculated as following: 

𝜏𝐴𝑃 = 2 𝑝′ − 1 

𝑝′ =
𝐶

𝑁 − 1
∑

𝐶(𝑖)

(𝑖 − 1)

𝑁

1=2

 

where C(i) is the number of items above the rank i and correctly ranked with respect to the item at 

rank i. Note that p is very similar to the p upon which Kendall’s tau is based; the only difference is 

that, instead of comparing an item with any other ranked item, it is compared only with items above. 

The values of p fall between 0 and 1, where 1 means that all items ranked by a method are ranked in 

the same order as the items ranked by the reference method and 0 means that all items ranked above 

another item are ranked incorrectly according to the reference method. The average precision rank 

correlation coefficient values will fall between –1 and +1 and interpreted in the same manner as 

Kendall’s tau. 

In principle, when the ranking errors are uniformly distributed over the list, Kendall’s tau and the 

average precision rank correlation coefficient are equivalent. When there are more errors towards the 

top of the list, then Kendall’s tau is always greater than the average precision rank correlation 

coefficient (τ > τAP), and, when there are fewer errors towards the top of the list, τ < τAP. 

4.2. Results 

4.2.1. Stochastic risk ranking approach: the reference approach 

The structure of the stochastic application of the generic risk assessment framework, which was used 

as the reference approach, is presented in Figure 11. In the stochastic approach, each variable of the 

model was described with a probability distribution (Table 39) and the risk of each food–pathogen 

combination (RiskFP) expressed as average probability of illness per year and total number of DALYs 

per year for 1 million consumers was estimated using Monte Carlo simulation with 10 000 iterations. 

Figure 12 presents the cumulative probability of illness per year for the 392 food–pathogen 

combinations. The relationship between the ranking of the 392 food–pathogen combinations and their 

risk expressed in total number of DALYs per year for 1 million consumers is presented in Figure 12. 

Table 41 shows the statistics of the average probability of illness per year and total number of DALYs 

per year for 1 million consumers estimated with the stochastic approach. 
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DALY: disability-adjusted life years. 

Figure 11:  Structure of the reference stochastic approach applied to the generated datasets of the 

food–pathogen combinations. For each food–pathogen combination a single risk measure is derived: 

RiskFP (expected total number of DALY per year for 1 million consumers). Circles represent random 

variables and rectangles fixed values. 

 

DALY: disability-adjusted life years. 

Figure 12:  Cumulative probability of illness per year for the 392 food–pathogen combinations 
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DALY: disability-adjusted life years. 

Figure 13:  Relation between the ranking of the 392 food–pathogen combinations and their risk 

expressed in total number of DALY per year for 1 million consumers 

Table 41:  Statistics of the assessed the assessed risk 392 food–pathogen combinations 

Statistics Average risk of illness/year 
Total number of DALYs per year 

for 1 million consumers 

Minimum 1.05E–12 1.74E–09 

Maximum 7.24E–01 2.90E+02 

10th percentile 3.31E–09 3.61E–05 

25th percentile 3.03E–07 5.61E–03 

50th percentile 3.26E–05 7.58E–01 

75th percentile 1.40E–03 1.71E+01 

90th percentile 2.39E–02 8.97E+01 

95th percentile 6.32E–02 1.49E+02 

DALY: disability-adjusted life years. 

 

In order to find out which parameters are influencing the obtained ranking the most, we calculated as a 

first approach the Kendall tau b correlation coefficients between the model outputs and the input 

parameters (Figure 14 and Table 42). The model seems to be more sensitive to the dose–response 

model, growth potential, initial concentration, reduction during cooking and DALY parameters. 

Moreover, particularly noteworthy is the fact that the rank of a particular food–pathogen pair is 

influenced by the mean and standard deviation of the distribution describing the variability. This 

shows clearly the expected bias on the risk estimates if variability is ignored. 
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Figure 14:  Kendall tau b correlation coefficients between the assessed risk (stochastic approach) and 

the input parameters, σr: potential reduction (standard deviation), μc: cross-contamination (mean), FR: 

frequency of consumption, σc: cross-contamination (standard deviation), σs: portion size (standard 

deviation), μs: portion size (mean), p: prevalence, μr: potential reduction (mean), σ0: initial 

concentration (standard deviation), Daly: DALY (disability-adjusted life years), μg: growth potential 

(mean), σg: growth potential (standard deviation), μ0: initial concentration (mean), r: dose–response 

model parameter 

Table 42:  Kendall tau b correlation coefficients between the assessed risk (stochastic approach) and 

the input parameters  

Parameters Notation 
Kendall tau b correlation 

coefficients 

Potential reduction (SD) r –0.109 

Cross-contamination (SD) sc –0.017 

Cross-contamination (mean) mc –0.016 

Frequency of consumption FR –0.006 

Portion size (mean) ms –0.003 

Portion size (SD) ss 0.013 

Prevalence p 0.069 

DALY DALY 0.138 

Potential reduction (mean) mr 0.141 

Growth potential (SD) sg 0.152 

Growth potential (mean) mg 0.154 

Initial concentration (SD) s0 0.156 

Initial concentration (mean) m0 0.241 

Dose–response parameter r 0.274 

SD: standard deviation; DALY: disability-adjusted life years. 

 

r 

c 

c 

FR 

s 

s 

p 

Daly 

r 

g 

g 

0 

0 

r 

-0.2 -0.1 0 0.1 0.2 0.3

Kendall Tau b Correlation Coefficients  



Development of a risk ranking toolbox for the EFSA BIOHAZ Panel 

 

EFSA Journal 2015;13(1):3939 72 

4.2.2. Evaluation of the deterministic risk ranking approach 

Most of the current risk rankings of the food–pathogen pairs have been carried out using 

methodologies that do not allow the inclusion of the variability and uncertainty inherent to food, 

pathogen and consumer variables. As a consequence, such methodologies can provide only a very 

limited (and potentially biased) assessment of the relative risk associated with the food–pathogen 

pairs. 

A model following the generic risk assessment framework was used in a deterministic way to check if 

the deterministic approach leads to equivalent ranking as the stochastic approach. Instead of using 

probability distributions, as in the stochastic approach for the initial concentration, growth potential, 

cross-contamination probability, reduction during cooking and serving size, single values are used. In 

order to investigate the effect of using different statistical measures of the probability distributions 

describing the model’s variables, the arithmetic mean, median, 75th percentiles or 90th percentiles were 

evaluated. Further, the ranking obtained with the stochastic model named as “reference rank” was 

compared with the four rankings derived from the deterministic approach named Rank(arithmetic 

mean), Rank(P50), Rank(P75) and Rank(P90) in which the arithmetic mean, median, 75th percentiles 

and 90th percentiles were used, respectively, as inputs. The comparison was performed both 

graphically and using the Kendall’s tau and AP indexes. Figure 15 shows the discrepancy between the 

deterministic and stochastic risk rankings.  
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Figure 15:  Comparison between the ranking obtained with the stochastic model (“reference rank”) 

and the four rankings derived from the deterministic approach named as Rank(arithmetic mean), 

Rank(P50), Rank (P75) and Rank(P90) in which the arithmetic mean, median, 75th percentiles and 90th 

percentiles were used, respectively, as inputs 

According to the Kendall’s tau coefficient, the highest differences between deterministic and 

stochastic are observed when the model was run with median as input (t = 0.773, Figure 15). The 

Kendall’s tau values that measure the correlation between the output rankings provided by the 

deterministic approaches and stochastic approach were 0.914, 0.885, 0.855 and 0.773 for rankings 

using P90, arithmetic mean, P75 and P50, respectively. One can conclude that, in general, the use of 

P90 provides the closest ranking to the reference approach. As shown in the graphs, the difference 
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between the deterministic and stochastic approaches varies between different food–pathogen 

combinations, i.e. some food–pathogen combinations are positioned close to the diagonal line, 

indicating that the ranking between deterministic and stochastic approaches are very close. As a 

consequence, the performance of the different statistical point estimates (means or percentiles) used in 

the deterministic approach will depend on the specific food–pathogen combination involved in the 

ranking and their position in the risk range. All the calculated average precision rank correlation 

coefficient (AP, Figure 15) are lower than the Kendall’s tau coefficient, showing that all the 

deterministic approaches have more errors towards the top of the list when compared with the errors 

towards the bottom of the list. Indeed, even in the case of the Rank(P90), which showed the best 

performance, some miss ranking can be obtained, i.e. for some combinations ranked close to 1 with 

the stochastic model (highest risk combination) the deterministic approach may rank such combination 

at lower risk as a difference of –50 in the rank can be obtained (under-estimation). 

4.2.3. Evaluation of the semi-quantitative risk ranking approach with ordinal scoring 

Semi-quantitative risk assessment models with ordinal scoring provide an intermediary level between 

the textual evaluation of qualitative risk assessment and the numerical evaluation of quantitative risk 

assessment, by evaluating risks with a score. The ordinal scoring approach does not require the same 

mathematical skills as for quantitative assessments and can be applied with less precise data. The 

system for assignment of a category for a food–pathogen combination used in this example uses nine 

criteria: initial concentration, prevalence, portion size, number of eating occasions, increase during 

storage, transfer to RTE during food handling, reduction during cooking, dose–response model and 

DALYs per case. For each variable, quantitative inputs on a continuous scale were assigned to a 

limited number of categories. The categories were in general defined using a logarithmic scale, as 

shown in Table 43. The ordinal scores were defined in a linear (arbitrary) scale from 1 to 5 or using a 

logarithmic transformation based on the formula: 

ln(𝑥′)

(1 − ln(𝑥′))
 

where x = x/(xmax – xmin) and × = bin limit (Havelaar et al., 2010). The overall score was obtained by 

adding the scores assigned for each criterion. 

Table 43:  Categories and scores defined in the ordinal scoring approach 

Inputs Bins(x) 
Ordinal score 

Inputs Bins(x) 
Ordinal score 

Linear Log-scaled Linear Log-scaled 

Initial 

concentration 

(H0) in CFU/g 

1.0E–03 1 0.000 Prevalence 1.0E–04 1 0.000 

1.0E–02 2 0.200 1.0E–03 2 0.250 

1.0E–01 3 0.400 1.0E–02 3 0.500 

1.0E+00 4 0.600 1.0E–01 4 0.750 

1.0E+01 5 0.800 3.0E–01 5 0.869 

Portion size in 

grams 

1.0E+01 1 0.000 Average number of 

eating occasions per 

year per person 

1.0E+00 1 0.000 

3.0E+01 2 0.239 1.2E+01 2 0.421 

9.0E+01 3 0.477 5.2E+01 3 0.670 

2.7E+02 4 0.716 1.0E+02 4 0.787 

8.1E+02 5 0.954 2.1E+02 5 0.905 

Increase 

during storage 

(G) 

1.0E+00 1 0.000 Probability of transfer 

to RTE (C) 

1.0E–05 1 0.000 

1.0E+01 2 0.200  1.0E–04 2 0.200 

1.0E+02 3 0.400  1.0E–03 3 0.400 

1.0E+03 4 0.600  1.0E–02 4 0.600 

1.0E+04 5 0.800  1.0E–01 5 0.800 
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Table 43:  Categories and scores defined in the ordinal scoring approach (continued) 

Inputs Bins(x) 
Ordinal score 

Inputs Bins(x) 
Ordinal score 

Linear Log-scaled Linear Log-scaled 

Reduction 

during 

cooking 

1.0E+00 1 0.000 Probability of infection 

(PInf per CFU) 

1.0E–12 1 0.000 

1.0E+01 2 –0.125 1.0E–06 2 0.500 

1.0E+02 3 –0.250 1.0E–04 3 0.667 

1.0E+03 4 –0.375 1.0E–03 4 0.750 

1.0E+04 5 –0.500 1.0E–02 5 0.833 

DALYs per 

case  

1.0E–04 1 0.000      

1.0E–03 2 0.200     

1.0E–02 3 0.400 Overall score = sum(inputs scores) 

1.0E–01 4 0.600     

1.0E+00 5 0.800         

 

 

The comparison between the stochastic and the ordinal scoring approach with linear and log-scaled 

scoring is shown in Figure 16. The results showed that, when ordinal scoring is used, the food–

pathogen combinations are placed into quite broad sets of categories and their rankings have 

significant differences compared with the stochastic approach. The ranking using log-scaled scoring 

system gives more categories but shows less similarity with the reference ranking (Kendall’s 

tau = 0.638) than the ranking obtained with the linear scoring (Kendall’s tau = 0.733) where both 

rankings with ordinal scoring have more errors towards the top of the list (the average precision rank 

correlation coefficients were 0.417 and 0.462, respectively). According to the two measures of rank 

correlation, the ordinal scoring approach performed worse than the deterministic one. This can be 

attributed to the fact that the use of scores and simple sum of scores instead of a more complicated 

mathematical formula induced additional errors on the risk estimate. In general, the comparison 

showed that ordinal scoring approach has little resolution, with high risks and low risks having a high 

chance of being classified in the same rank. 
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Figure 16:  Comparison between the ranking obtained with the stochastic approach named as 

“reference rank” and rankings derived from the ordinal scoring approach with linear and log-scaled 

scores 

4.3. Concluding remarks 

The analysis performed in this section aimed at a systematic comparison of the general approaches in 

risk ranking (i.e. stochastic, deterministic, ordinal scoring). The results showed that both deterministic 

and ordinal scoring approaches may provide rankings significantly different from the stochastic 

approach. The difference between the deterministic and stochastic approach depends on the statistical 

measure used for the variable inputs. In addition, both deterministic and ordinal scoring approaches 
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showed more errors (i.e. differences from the stochastic approach) towards the top of the ranking list, 

which is important from the risk management point of view. However, of the two approaches, the 

deterministic one showed significantly higher similarities with the reference stochastic approach. 

The use of deterministic models that ignore variability may result in risk ranking errors, which may be 

greater for the food–pathogen combinations with the highest risk, as shown in the example. In 

deterministic approaches, the selection of the point estimate used in the model can affect the risk 

ranking. Among different possible point estimates (arithmetic mean, median, 75th and 90th percentiles), 

the use of a high percentile provides, in general, ranking results which are most similar to a stochastic 

model. However, the performance of different point estimates in a ranking assessment will depend on 

the data input for the specific food–pathogen combinations involved; therefore, it is recommended to 

use more than one point estimates, for example arithmetic mean and a higher percentile as part of 

sensitivity analysis to compare rankings.  

5. Uncertainty 

None of the available risk ranking tools selected for this opinion is able to take into account and 

describe uncertainty in risk ranking. The need to characterise, document and explain uncertainty in 

risk assessment has been recognised by EFSA (2009). Although the number of published studies on 

the various methods for incorporating uncertainty in risk assessment is increasing, less information is 

available for risk ranking. The objective of this section is to present methodologies for identifying and 

evaluating the uncertainty sources in risk assessment models as well to explore their applicability to 

risk ranking models using a case study. 

5.1. Background 

In the EFSA context, the term “uncertainty” is intended to cover ‘all types of limitations in knowledge, 

at the time it is collected’ in the risk assessment process (EFSA, 2009). The need to address 

uncertainty is expressed in the Codex Working Principles for Risk Analysis. These state that 

‘constraints, uncertainties and assumptions having an impact on the risk assessment should be 

explicitly considered at each step in the risk assessment and documented in a transparent manner’ 

(CODEX, 2007). The Scientific Committee of EFSA explicitly endorsed this principle in its guidance 

on transparency in risk assessment (EFSA, 2009). Therefore, it is recognised that in the risk 

assessment process it is important to characterise, document and explain all types of uncertainty 

arising in the process. 

Ideally, the analysis of the uncertainty in a risk assessment would require: 

 identifying uncertainties; 

 describing uncertainties; 

 evaluating uncertainties around individual factors in their own scales; 

 evaluating the impact of individual factors uncertainties on the assessment outcome; 

 evaluating the combined impact of multiple uncertainties on the assessment outcome, 

including evaluating how much the combined uncertainties downgrade the weight of the 

evidence. 

The last three steps can be conducted at three levels: descriptive, deterministic and probabilistic. 

An EFSA Working Group (WG)6 is currently formulating guidelines on how the uncertainty analysis 

should be performed in a harmonised and structured way. 

                                                      
6 See http://www.efsa.europa.eu/en/scer/scerwgs.htm for details. 
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5.2. Typology of uncertainty 

Organisations operating at the boundary between science and policy, such as EFSA, need to address 

very complex issues that often involve high stakes. Dealing with uncertainties in such issues also 

implies a vision on the role of science in policy making (Petersen et al., 2011). Increasingly, it has 

become clear that science cannot be value-free and that politics need to deal with issues that are 

clouded with uncertainties, including value diversities. This implies that uncertainty is more than a 

number and can include the following dimensions: 

 technical (inexactness) 

 methodological (unreliability) 

 epistemological (ignorance) 

 societal (limited social robustness). 

Communicating uncertainty to risk managers in such a way that they can adequately include different 

possible outcomes of the risk assessment in their decisions is a key requirement and will be further 

discussed in an opinion of the Scientific Committee on uncertainty, which will be published for public 

consultation in 2015. The present opinion will explore how uncertainty in risk ranking models can be 

identified and characterised, and how the impact of uncertainty on the risk ranking results can be 

evaluated qualitatively or quantitatively. 

A typology for identifying and characterising uncertainty sources has been presented by Knol et al. 

(2009), see Table 44. The value of this classification is that it helps to define further actions to deal 

with the identified uncertainties. It also offers a framework for transparent identification and 

description of all uncertainties involved in a risk assessment, including aspects that have not been 

included in the problem formulation or system boundaries. Sources of uncertainty are related to the 

risk assessment question. For example, if (representative) data are available for one specific country, 

they would not be a source of uncertainty if the risk assessment was related to that country, but would 

be if the risk assessment concerns other countries. 

Table 44:  Typology of uncertainties (obtained from Knol et al. (2009)) 

Uncertainty characterisations Categories 

Location: the location at which the 

uncertainty manifests itself in the 

assessment 

Context: definitions and boundaries of the system that is being 

assessed 

Model structure: structure and form of the relationships between the 

variables that describe the system 

Parameters: constants in functions that define the relationships 

between variables (such as relative risks or severity weights) 

Input data: input datasets (such as concentrations, demographic data, 

and incidence data) 

Nature: the underlying cause of the 

uncertainty 

Epistemic: resulting from incomplete knowledge 

Ontic (process variability): resulting from natural and social 

variability in the system 

Range: expression of the uncertainty Statistical (range + chance): specified probabilities and specified 

outcomes 

Scenario (range + “what if”): specified outcomes, but unspecified 

probabilities 

Recognised ignorance: unknown outcomes, unknown probabilities—uncertainties are present, but no useful 

estimate can be given 

Methodological unreliability: methodological quality of all different elements of the assessment; a qualitative 

judgement of the assessment process which can based on, for example, its theoretical foundation, empirical 

basis, reproducibility and acceptance within the peer community 

Value diversity among analysts: potential value-ladenness of assumptions which inevitably involve—to some 

degree—arbitrary judgements by the analysts 
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Further details on the uncertainty typology can be found in the technical report accompanying this 

opinion (Bouwknegt and Havelaar, 2014). 

5.3. Evaluation of uncertainty sources: NUSAP approach 

One approach to deal with uncertainties after its identification and characterisation is the NUSAP 

system (van der Sluijs et al., 2005).This provides a structured approach to appreciating uncertainties in 

model-based health risk assessments. NUSAP stands for numeral, unit, spread, assessment and 

pedigree. The first three dimensions are related to conventional technical approaches to uncertainty, 

expressed in numbers (N) with appropriate units (U) and a measure of spread (S) such as a range or 

standard deviation. Methods to address spread include statistical methods, sensitivity analysis and 

expert elicitation. The last two dimensions are related to aspects of uncertainty that can less readily be 

analysed by quantitative methods. Assessment (A) expresses qualitative expert judgements about the 

quality of the information used in the model. Pedigree (P) implies a multi-criterion evaluation of the 

process by which the information was produced. The background history by which the information 

was produced is considered, in combination with the underpinning and scientific status of the 

information. Qualitative judgements about the nature are supported by so-called pedigree matrices, 

which are then translated in a numerical, ordinal scale. The NUSAP output is a score per uncertainty 

source for the strength of the information and its influence on the model outcome. These two 

parameters are combined for all uncertainty sources in a diagnostic diagram, which will help to 

identify the key uncertainties in the assessment, i.e. those sources with a low information strength and 

a large influence on the model outcome. The NUSAP approach, therefore, can be used to evaluate 

uncertainties that cannot be quantified, but can also be useful in identifying the most important 

uncertainties for further quantitative evaluation and/or additional work to strengthen the evidence base 

of the assessment. Pedigree matrices have been developed to evaluate model parameters and input data 

as well as assumptions. Experts are asked to evaluate each uncertain parameter or input data and to 

note down the rationale for their evaluation. The strength of the information is then summarised as the 

median score over all experts and dimensions. However, the noted rationales are of equal importance 

when considering the results and the way forward. 

In addition to parameters and input data, all models include a set of assumptions, which may be 

explicitly stated or be implicitly present in the model formulation. Identifying assumptions is a highly 

useful method to assess the scientific validity and credibility of model-based results. All possible 

assumptions should be included, e.g. processes kept out of the system boundaries, simplifications of 

reality, up- or downscaling in the coupling of models, embedded risk management aspects (e.g. 

conservative estimates), feedback loops not included, etc. A pedigree matrix for evaluating 

assumptions is presented in Table 45, Section 5.4. The evaluation process is similar to that for 

parameters. Note that Table 45 also includes a column to assess the influence on results of the 

assumptions; the same scale can be used for assessing the strength of model parameters. 

The analysis is completed by presenting the information in diagnostic diagrams, which are presented 

in the next section. Parameters or assumptions with low pedigree scores (i.e. high potential value-

ladeness) and high influence on results are most critical to the model and need further attention. 

5.4. Case study on NUSAP to characterise uncertainty in the EFoNAO model 

To evaluate the uncertainty typology and NUSAP approach, a case study was selected by evaluating 

the EFoNAO-RRT model, used for identifying and ranking pathogen and food combinations of most 

public health concern (EFSA BIOHAZ Panel, 2013). Uncertainties were identified by reviewing the 

approach as described in this opinion and listing explicit and implicit assumptions and uncertainties. 

The list of uncertainties was then finalised by discussions with experts from the WG risk ranking tools 

and (re)phrased as assumptions. The assumptions were subsequently characterised based on the 

uncertainty typology from Knol et al. (2009) (Table 46, Section 5.2). Sources of uncertainty were 

characterised in the following dimensions: location, nature, range, recognised ignorance, 

methodological unreliability and value diversity. 
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To identify the uncertainty sources that were most important for the total uncertainty of the EFoNAO 

model, the NUSAP approach was applied in a workshop involving experts from the BIOHAZ Panel 

and Scientific Committee. The strength of each uncertainty source was scored according to four 

criteria (see Table 45 for the criteria used and the scores in this study). The median of all scores for 

these four criteria over all experts was the measure of strength of the information. Experts also 

estimated the influence of the uncertainty on the model results. The median of this score, combined 

with the median of the strength, gives an impression of the importance of an uncertainty source: 

sources with low strength and large influence on the final results are most important for further 

consideration. The model outcomes for evaluation were (1) the identification of important microbial 

hazards related to foods of non-animal origin and (2) the ranking of these hazards. Note that the 

objective of the workshop was to evaluate the use of NUSAP in EFSA, rather than to evaluate the 

EFoNAO-RRT. A detailed report of the workshop is provided in Bouwknegt and Havelaar (2014). 

Table 45:  The pedigree matrix used in the NUSAP workshop to assess the strength of the 

information for each uncertain assumption and its influence on the results (effect) 

Score 

Strength Effect 

Influence of 

situational 

limitations 

Plausibility Choice space 
Agreement 

among peers 

Influence on 

results 

0 Choice 

assumption hardly 

influenced 

The assumption is 

very plausible 

(based on 

established 

theory, verified 

through peer 

review) 

Hardly any 

alternative 

available 

A large majority 

(90–100 %) 

among peers of 

have made the 

same assumption  

The assumption 

has no or 

negligible impact 

on the results 

1 Limited influence 

in choice 

assumption 

Plausible (based 

on model with 

theoretical basis, 

empirically 

verified data) 

Very limited 

number of 

alternatives 

available 

Many experts 

(75 %) would 

have made the 

same assumption 

The assumption 

has little impact 

on the results 

2 Choice 

assumption 

moderately 

influenced 

The assumption is 

acceptable (based 

on a simple 

model, 

extrapolated data) 

Limited choice 

from alternative 

assumptions 

Several experts 

(50 %) would 

have made the 

same assumption 

The assumption 

has a moderate 

impact on the end 

result 

3 Important 

influence in 

choice assumption 

Assumption is 

doubtful (based 

on not verified 

empirical data) 

Average number 

of alternatives 

Few experts 

(25 %) would 

have made the 

same assumption 

The assumption 

has an important 

impact on the end 

result 

4 Totally different 

assumption had 

there not been 

limitations 

The assumption is 

fictive or 

speculative 

Ample choice 

from alternative 

assumptions 

Controversial 

assumption: 

hardly any experts 

(1 %) would have 

made the same 

assumption 

 

 

Sixteen assumptions relating to the EFoNAO-RRT were identified and analysed with the uncertainty 

typology (Table 46). The majority of uncertainty sources (11 out of 16) related to the parameter and 

input data that were used. Furthermore, 14 of the 16 uncertainties were related to imperfect knowledge 

(“epistemic”), which could, in theory, be reduced by further studies. These uncertainty sources 

resulted from the study boundaries set by the mandate, or from analysts’ or technical constraints (data 

availability, limits in modelling techniques, etc.). 
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Table 46:  Characterisation of the 16 uncertainty sources by using the uncertainty typology of Table 44 

 

Nature Range Recognised 

ignorance 

Method 

unreliability 

Value 

diversity Epistemic Ontic Statistical Scenario 

Contextual uncertainty 

Link between a pathogen and a type of EFoNAO can be deduced 

from outbreak data only 

X   X + + + 

The added value of considering pathogen inactivation to assess risk 

levels is negligible for each food–pathogen pair 

X X  X + – + 

Contextual and model uncertainty 

The risk of a pathogen/food combination can be estimated by a 

linear, unweighted combination of scores on seven parameters, each 

divided in three or four categories that are represented by arbitrary 

numbers 

X   X + – + 

Model uncertainty 

The risk of a pathogen/food combination can be estimated by a 

combination of top-down and bottom-up approaches 

X    + – + 

Assuming a prevalence score of 2 to the category defined as 

“unknown prevalence”, implies that the prevalence cannot be 

assumed to be zero for Shigella spp., Yersinia spp., Staphylococcus 

aureus, Norovirus, hepatitis A virus (HAV) and Cryptosporidium 

spp. 

X   X + – + 

Parameter and input data uncertainty 

The estimated true number of illnesses by a specific pathogen in the 

EU, without consideration of attribution to sources, is a valid 

indicator of the risk of a specific pathogen in a specific food of non-

animal origin 

X   X + – + 

The prevalence of pathogens in all EFoNAO samples is a valid 

estimate for the prevalence in the EFoNAO group under 

consideration 

X  X  +/– – + 

The relative degree of underreporting of outbreak cases is the same in 

the USA and EU and for each food–pathogen pair 

X  X  + + + 

The incidence of Norovirus and bacterial intoxications in the EU is 

similar to the Netherlands 

X  X  + – + 

The longest reported shelf life of food in a specific food group is 

representative of all products in that group and pathogen growth is 

not affected by growth of spoilage organisms 

 X X  – – + 
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Table 46:  Characterisation of the 16 uncertainty sources by using the uncertainty typology of Table 44 (continued) 

 

Nature Range Recognised 

ignorance 

Method 

unreliability 

Value 

diversity Epistemic Ontic Statistical Scenario 

Available consumption data are representative of the whole EU X  X  + – + 

Low numbers of Salmonella spp., Shigella spp., STEC and Yersinia 

enterocolitica can cause disease without growth during storage in 

retail or consumer’s homes 

X   X + – + 

Pathogen-specific DALY estimates published for the Netherlands are 

representative for the whole EU 

X  X  – + + 

DALYs per case for Shigella spp. and Y. enterocolitica fall within the 

same category as Salmonella spp. and are the same for STEC O157 

and STEC non-O157 

X  X  + – + 

All products will be eaten at the end of their shelf life  X X  – – + 

With the exceptions of Bacillus cereus and Clostridium perfringens, 

the overall prevalence of all pathogens in the different EFoNAO 

groups, is assumed to be either low (< 1 %) or unknown 

X  X  – +/– + 

DALY: disability-adjusted life years; EFoNAO: EFSA food of non-animal origin; STEC: Shiga toxin-producing Escherichia coli. 
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During the workshop, there was intensive discussion on the NUSAP methodology and on the 

interpretation of the criteria and the scores. This discussion led to a revision of the definitions for the 

“influence on results” categories, as reflected in Table 46. As a consequence of the time needed for 

these discussions, only 7 out of 16 assumptions could be evaluated. Figure 17 shows the scoring 

results for the strength of the information for these seven assumptions. Six out of seven sources had an 

interquartile range covering two score classes, thereby showing agreement among most experts. 

However, the range of scores covered the full scale (four classes) for three assumptions and three 

classes for four assumptions, indicating that for all assumptions, opinions diverging from the majority 

view were expressed. One uncertainty source (no 16, scored first of all assumptions), had an 

interquartile range covering three classes. The median scores are concentrated around the midpoint of 

the scale, which may reflect the divergence in scores by individual expert and may be related to lack 

of experience of the experts. 

 

The white diamonds indicate the median score, the error bars indicate the minimum (left) and maximum (right) score and the 

black rectangles indicate the interquartile range. Assumptions with higher scores (in the red zone) have lower strength of the 

information compared with lower scores (green zone). Diamonds crossing the y-axis indicate the assumptions that have not 

been scored. 

Figure 17:  Strength (scientific rigor) of the information for the assumptions identified in the 

EFoNAO-RRT that yield uncertainty in the model outcome 

 

Figures 18 and 19 show the strength and effect diagrams for the model outcomes hazard identification 

and hazard ranking. Only assumption “No 4” was judged to be influential on the hazard identification, 

whereas four assumptions (Nos 1, 2, 5 and 12) were judged to have a moderate impact on hazard 

ranking. 
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The x-axis displays the median strength of the information (i.e. the white diamonds from Figure 18), the y-axis the median 

score for the influence on results. Values with a high score on influence on results and strength of the information (the red 

zone) are critical assumptions in the model. 

Figure 18:  Strength (scientific rigor) and effect diagram for the seven assumptions of the EFoNAO-

RRT scored during the workshop for the influence on hazard identification 

 
The x-axis displays the median strength of the information (i.e. the white diamonds from Figure 19), the y-axis the median 

score for the influence on results. Values with a high score on influence on results and strength of the information (the red 

zone) are critical assumptions in the model. 

Figure 19:  Strength (scientific rigor) and effect diagram for the seven assumptions of the EFoNAO-

RRT scored during the workshop for the influence on hazard ranking 

No. 4 

Nos. 5 & 14  

Nos. 12 & 16 

No. 2 No. 1 

No. 5 

No. 14 

No. 1 No. 2 

No. 12 

No. 16 No. 4 



Development of a risk ranking toolbox for the EFSA BIOHAZ Panel 

 

EFSA Journal 2015;13(1):3939 86 

The combination of uncertainty typology and NUSAP was found to be very helpful by all participants 

of the workshop. The procedure helped to systematically identify and evaluate the uncertainty sources 

related to model outcomes and to assess their impact on the end results. A framework encompassing 

uncertainty typology and evaluation (e.g. by NUSAP) should be part of each risk assessment to 

formalise discussions on uncertainties. By doing this structurally and integrated with the risk 

assessment activities, experience grows and the process would eventually save time. Nevertheless, it 

was recommended that practicality and feasibility aspects should always be considered when 

incorporating uncertainty assessment in the risk assessment process. 

The interpretation of pedigree criteria to assess the strength and effect (see Table 47) was found to be 

difficult by participants. Part of the difficulty is caused by the difference in terminology used by 

scientists working in philosophical sciences, who developed the NUSAP methodology, and those 

working in the natural sciences. It was recommended that a clear terminology is developed, which is 

understood by all involved in the assessment. Preferably, a short training session with dummy 

uncertainty sources would be conducted before the NUSAP workshop.  

Much time during the workshop was devoted to discussions on how to describe the sources of 

uncertainty. Ideally, consensus on the phrasing/wording is obtained before the scoring starts. This 

should be an iterative process that involves both the principal analyst(s) of the study to be evaluated 

and the experts who will participate in the NUSAP workshop. 

The aggregation of scores by all experts on all four criteria related to the strength of the information of 

the assumptions in a single median (and a range around it) was considered to result in loss of 

information. In the final report (Bouwknegt and Havelaar, 2014), the scores were also presented by 

criterion. The pedigree criterion “agreement among peers” was scored consistently best for all 

assumptions; the criteria “influence of situational limitations”, “plausibility” and “choice space” 

scored, in general, lower than “agreement among peers” and showed larger variation. The criteria 

considered in the scoring of strength of the information are different in nature and addressing potential 

issues may require different strategies. A more detailed summary description of the results of this 

analysis, and possible the development of a multi-criterion analysis within the NUSAP approach was 

proposed in order to extract and use more of the information obtained during scoring of all criteria. 

5.5. Quantifying uncertainty in risk ranking 

In practice, the parameters and data used in risk ranking cannot be characterised precisely; the 

knowledge of the causal phenomena and available data are generally incomplete. Such uncertainty 

propagates within the model and causes variability in its outputs; as many values are possible for a 

model parameter, the model outputs associated to the different values of the uncertain parameter will 

be different. Following a qualitative analysis (e.g. by the NUSAP method), the quantification and 

characterisation of the resulting output uncertainty is crucial, and it defines the scope of the 

uncertainty analysis. Such quantitative analysis could be initially focused on or even be restricted to 

those parameters that are considered most influential on the model outcomes by the qualitative 

analysis. 

5.5.1. Principles of uncertainty analysis 

Uncertainty analysis consists of evaluating quantitatively the uncertainty or variability in the model 

components (parameters, input variables, equations) for a specific situation, and generating an 

uncertainty distribution for each output variable instead of a misleading single value. An important 

consequence is that it provides tools to assess, for instance, the probability of one food–pathogen 

combination is at higher risk than another combination. This makes uncertainty analysis a key 

component of risk ranking. 

Within a particular model, equations, parameters and input variables are all subject to variability or 

uncertainty. First, decisions have to be made on the model structure and on the functional relationships 

between input variables and output variables. These decisions may sometimes be somewhat 
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subjective, and it is not always obvious what their consequences will be. Thus sensitivity analysis 

needs to be performed to establish the effects of one or several type of modelling approaches on the 

output of the model. Second, parameter values are obtained from statistical estimation procedures 

based on empirical evidence or sometimes from literature reviews or expert opinion. Their quality is 

inevitably limited by the variability and possible lack of appropriateness of the available evidence. The 

uncertainty and natural variability of parameters are the central point of many uncertainty analyses. 

For each input, the uncertainty needs to be defined. The uncertainty can be described in different 

ways. For a parameter, it is often given as the most likely value plus or minus a given percentage or it 

is specified through a continuous probability distribution over a range of possible values. In general, 

three characteristics may be considered for describing the uncertainty: nominal values, uncertainty 

domains and probability distributions. The uniform distribution, which gives equal probability to each 

value within the uncertainty range, is frequently used in sensitivity analysis when the main objective is 

to understand model behaviour. In uncertainty analysis, more flexible probability distributions are 

usually needed to represent the input uncertainty. 

In practice, uncertainty analysis consists of four steps: 

 definition of the distribution of each uncertain input factor; 

 generation of N iterations from the distribution of uncertain input factors; 

 computation of the model output for each set of iterations; 

 analysis of the output distributions (computation of means, variances, quartiles, percentiles, 

etc.). 

The first step of an uncertainty analysis is to define the probability distributions for the input 

parameters. Table 47 gives an example of a risk assessment model inputs. A risk assessment model 

usually describes the variability of the occurrence of a list of events using stochastic processes. It is 

crucial to distinguish variability probability distributions from uncertainty distribution parameters. 

Attention must be paid when choosing probability distributions. The range of input values usually has 

more influence on the output than the distribution shapes, but some characteristics such as the degree 

of symmetry or skewness may also play a role. 

There is a large choice of probability distributions. The uniform distribution gives equal weight to 

each value in the uncertainty range. However, the extreme values of the uncertainty ranges are less 

likely than the central values and other distribution are needed. The well-known normal distribution, a 

symmetrical distribution, is often convenient since it requires only the specification of two well-

understood parameters: a mean value and a standard deviation. For some inputs, the distribution 

should be asymmetrical, for example if the input is greater than zero. Then log-normal, gamma or beta 

distributions offer a large range of possibilities. In uncertainty analysis, normal distribution is often 

replaced by the truncated normal distribution or by symmetric beta distributions, which give upper and 

lower bounds to the possible values. Finally, the triangular distributions are often convenient for a 

simple representation of subjective beliefs, because they are defined entirely by their uncertainty range 

(minimum and maximum) and their most likely value. 

The uncertainty analysis brings additional challenge to risk ranking. In Figure 20, the uncertainty 

probability density distributions of the model outputs for risks associated with three food–pathogen 

combinations are presented. The rankings depend on what statistic is used to characterise a risk whose 

value is not known with certainty. If means are used (as a best guess) the three food–pathogen 

combinations would be ranked 2-1-3. If, for example, 99th percentiles are used (as a worst case), the 

order becomes 3-2-1. 
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Figure 20:  Uncertainty probability density distributions of the model outputs for risks associated with 

three food–pathogen (FP) combinations. Note that the x-axis uses a hypothetical risk metric, therefore 

no units are used. 

5.5.2. Ranking in presence of uncertainty 

First, a method is presented for comparing the risk associated with two food–pathogen combinations. 

For example, we have two combinations A and B in presence of uncertainty on the parameters used to 

assess the associated risk for consumers, which propagate through the model leading to uncertainties 

in risk estimates. In this case, risk calculations should reflect these uncertainties and so should the 

ranking. For simplicity of illustration, log-normally distributed uncertainty is assumed to be affecting 

directly the risks for A and B. 

 

Figure 21:  Probability density functions (PDF) and cumulative distribution functions (CDF) of the 

random variables DALYs for A and B. Above the 75th percentile B > A, below the 75th percentile 

A > B. 

Examining the distributions of the DALYs associated with A and B in Figure 21, distribution A (DA) 

and distribution B (DB), respectively, one may observe that the DA is much more uncertain than DB 

but the expected value of DB is greater than DA. On the other hand, there is a range in which the DB 

percentiles are larger than the DA ones. For example, if one were to perform the ranking based on the 

DALYs 95th percentile values, the conclusion would be that combination A is more risky than B, 

contrary to what would happen if the rankings were based on the expected values. 

The drawback of comparing the expected values or specific percentiles lies in the loss of information 

about the distribution. In order to give full account of the difference between the distributions of DA 

and DB one have to consider the random variable DA–DB whose PDF and CDF are shown in Figure 

22. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 2 4 6 8 10

P
ro

b
a

b
ili

ty
 d

e
n

s
it
y
 

Risk metric 

0

0.1

0.2

0.3

0.4

0.5

0.6

-14 -12 -10 -8 -6 -4 -2 0

P
D

F

DALYs (log10)

A

B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-14 -12 -10 -8 -6 -4 -2 0

C
D

F

DALYs (log10)

A

B



Development of a risk ranking toolbox for the EFSA BIOHAZ Panel 

 

EFSA Journal 2015;13(1):3939 89 

 

Figure 22:  PDF and CDF of the random variable (DA–DB). The probability of DA–DB < 0 is 0.678. 

In order to establish whether A is more risky than B, one can consider the probability rAB = 1 –

 P(DA–DB < 0) (0) that DA is greater than DB; for example, in the present case rAB = 1 –

 0.678 = 0.322, which means that, with a probability of 0.322, A is more risky than B. To decide on 

the relative importance of the two combinations A and B, one may choose a threshold (T) ranging 

from 0.5 to 1 on the rAB value such that, if rAB is larger than T, then A is more risky than B, 

otherwise no conclusion can be drawn. Obviously, the lower the threshold, the higher the risk 

associated with the decision. However, the choice of a simple-valued threshold has some limitations 

when considering multiple combinations. These limitations can partially be overcome by referring the 

comparison to a threshold range [Tl, Tu] in such a way that for the two components A and B (Baraldi 

et al., 2009): 

 if rAB > Tu, then A is more risky than B; 

 if rAB < Tl, then B is more risky than A; 

 if Tl < rAB < Tu, then A is equally risky to B. 

To extend the method to systems with a large numbers of components, a procedure for successive 

ranking must be introduced to avoid the combinatorial explosion of pairwise comparisons using, for 

example, the Quicksort algorithm (Horae, 1962) implemented by Baraldi et al. (2009). Once the 

probability distributions have been specified, representative samples are drawn from these 

distributions using Monte Carlo sampling. The samples are drawn independently, and each sample is 

generated by drawing independently the value of each parameter. 

After the sample of parameters values have been generated, the corresponding model output values are 

computed. If the computation of the model output is time consuming, this step may be difficult to 

carry out. In this case, the sample size (N) must be changed to a smaller value because of the 

computation time. 

The last step of the analysis is to summarise the values of obtained outputs. Different quantities can be 

easily calculated. For example, when the model has a single output variable, estimates of the expected 

value and variance of can be computed. It is also useful to estimate the quartiles/percentiles associated 

with the distribution and the probabilities that the output variable is lower than some thresholds. A 

histogram representation of the output variable values can also provide more information than the 

summary statistics. 

5.5.3. Example of uncertainty analysis 

For this example, the generic assessment framework presented in Section 4 is applied to five food–

pathogen combinations. First, the stochastic quantitative risk assessment, including only variability, 

was applied using inputs presented in Table 47. 
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Table 47:  Inputs for hypothetic five food–pathogen (FP) combinations 

Parameters FP1 FP2 FP3 FP4 FP5 

P 0.03 0.20 0.01 0.01 0.30 

m0 1 –2 –3 –2 1.5 

s0 0.8 0.5 0.5 0.5 0.8 

Growth 1 1 1 1 0 

mg 0.5 0.3 0.5 0.25 – 

sg 0.8 0.8 0.5 0.1 – 

mc –3 –6 – 6 – 6 –5 

sc 0.8 0.5 0.5 0.5 0.5 

ms 30 100 125 125 150 

ss 7 10 5 5 10 

RTE 1 1 0 0 0 

mr – – – 3 –3 –7 

sr – – 0.5 0.5 0.5 

R –10 –10 –3 –3.5 –3 

DALY 14 14 10 1 0.03 

FR 30 30 50 50 80 

LogR ignoring uncertainty 3.42 3.81 2.14 0.16 2.56 

Rank orders 2 1 4 5 3 

RTE: ready-to-eat; DALY: disability-adjusted life years; FR: frequency of consumption. 

As shown in Table 48, FP2 is ranked first, FP1 is ranked second, FP5 is ranked third, FP3 is ranked 

fourth and FP4 is ranked fifth. This ranking assumed that all used parameters are certain (known 

perfectly). 

In practice, parameters cannot be estimated precisely; as the knowledge of the causal phenomena and 

available data are generally incomplete. In Table 48, the choice of the types of probability 

distributions is presented. The ranges of the possible values of the parameters for the five hypothetical 

food–pathogen pairs are shown in Figure 23. The choice of the types of probability distributions and 

their parameters can be based on available data using classical inferential statistical approaches or 

statistical Bayesian approaches, or obtained from formal expert elicitation knowledge exercises. 

Table 48:  Variability and uncertainty probability distributions 

Model inputs 

Parameters of the 

variability 

distribution 

Variability distribution model 

(first order iteration in Figure 

24) 

Uncertainty distribution 

(second order iteration in 

Figure 24) 

Prevalence p Bernoulli (p) p ~ beta (a, b) 

Initial concentration in 

log10 CFU/g 

m0 Normal (m0,s0) M0 ~ normal (x, y) 

s0 S0 ~ gamma (z, w) 

Growth potential in 

log10 

mg Gamma (mg, sg) mg ~ normal (t, u) 

sg sg ~ gamma (d, f) 

Cross-contamination 

(log10 probability of 

transfer) 

mc Normal (mc,sc) mg ~ normal (q, s) 

sc sg ~ gamma (g, h) 

Portion size ms Gamma (ms, ss) mg ~ normal (k, l) 

ss sg ~ gamma (n, r) 

Potential reduction mr Normal (mr,sr) mg ~ normal (i, o) 

sr sg ~ gamma (p, m) 

Dose–response r No variability p ~ beta (a’, b’) 

DALY DALY No variability DALY ~ gamma (v,e) 

Frequency of 

consumption 

FR No variability FR ~ normal (j,k’) 

DALY: disability-adjusted life years. 
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    Prevalence      Frequency of consumption 

 
     Initial concentration (mean)     Initial concentration (SD) 

Figure 23: Uncertainty ranges of input parameters and their corresponding model outputs for the five hypothetical food–pathogen combinations (FP1 to FP5) 
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     Growth potential (mean)     Growth potential (SD) 

 
     Cross-contamination (mean)     Cross-contamination (SD) 

Figure 23: Uncertainty ranges of input parameters and their corresponding model outputs for the five hypothetical food–pathogen combinations (FP1 to FP5) 

(continued) 
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     Portion size (mean)      Portion size (SD) 

 
    Potential reduction (mean)      Potential reduction (SD) 

Figure 23: Uncertainty ranges of input parameters and their corresponding model outputs for the five hypothetical food–pathogen combinations (FP1 to FP5) 

(continued) 
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   Dose–response parameter (r)      DALY 

Figure 23:  Uncertainty ranges of input parameters and their corresponding model outputs for the five hypothetical food–pathogen combinations (FP1 to FP5) 

(continued) 
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The uncertainty about the parameters propagates within the model and causes variability in its outputs: 

as many values are possible for a model parameter, the model outputs associated with the different 

values of the uncertain parameter will be different. Figure 24 shows how uncertainty can be integrated 

in the generic risk assessment framework presented in Section 4.1.1 (Figure 10 and Table 39). Two 

hierarchical loops are defined, an outer loop for uncertainty (second order iteration in Figure 24) and 

an inner loop for variability (first order iteration in Figure 24): two-dimensional (2D) Monte Carlo 

simulations. 

 

Figure 24:  Structure of a risk assessment model using two-dimensional Monte Carlo simulations 

The model outputs are presented in Figure 23. 

In Figure 25, the median and 95th percentiles of the risks obtained for each food–pathogen pairs are 

presented (bar chart with different colours). When uncertainty is included, FP3 is ranked first, FP2 is 

ranked second, FP1 is ranked third, FP4 is ranked fourth and FP5 is ranked fifth. The other bar 

diagrams (with blue bars) in Figure 25 show how the order of the different food–pathogen pairs varies 

because of the uncertainty about the parameters used in the two-dimensional Monte Carlo simulations. 

From the distribution of the different ranks we assessed the probability of each food–pathogen pair 

being ranked higher than the other food–pathogen pairs (pairwise comparison). 
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Figure 25:  Probability distribution of the food–pathogen combination rank orders 

Table 49:  Pairwise comparison using the probability of one food pathogen being ranked higher than 

the other food–pathogen pairs (rAB)  

Rank orders 

without 

uncertainty 

Median rank 

(2D Monte 

Carlo) 

FP3 FP2 FP1 FP4 FP5 
Final rank (2D 

Monte Carlo) 

4 FP3 – 0.61 0.91 0.99 0.99 FP3, FP2 (1) 

1 FP2  – 0.78 0.93 0.96 FP3, FP2 (1) 

2 FP1   – 0.72 0.81 FP1 (3) 

5 FP4    – 0.70 FP4, FP5 (4) 

3 FP5     – FP4, FP5 (4) 

 

Using the rule ‘if rAB > 0.80, then A is more risky than B; if rAB < 0.20, then B is more risky than A; 

if 0.20< rAB < 0.80, then A is equally risky to B’, then FP3 and FP2 have the same rank of first, FP1 

is ranked third, FP4 and FP5 have the same rank of fourth (Table 49). 

In summary, uncertainty in rank orders cannot be formally quantified using qualitative or semi-

quantitative ranking methods even though these are often applied in situations where data are limited. 

Uncertainty and variability in risk ranking can be represented by means of probability distributions, 

for example using two-dimensional Monte Carlo simulations. However, probabilistic representation is 

difficult when sufficient data are not available for statistical analysis. Expert elicitation procedures to 

incorporate diffuse information into the corresponding probability distributions may be adopted. 
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6. Risk ranking toolbox for the EFSA BIOHAZ Panel 

The risk ranking questions for the BIOHAZ Panel vary widely in nature and there are different 

constraints in time, resources and available data that need to be taken into account when deciding on a 

risk ranking approach. Therefore, no single solution will satisfy all needs of the Panel, and this section 

proposes several approaches that can be considered by the Panel for a particular mandate. These 

include a bottom-up approach (i.e. based on exposure data, and dose–response relationships), a top-

down approach (i.e. based on disease incidence and attribution data) and a combined approach. 

6.1. Bottom-up approach 

6.1.1. Fully quantitative risk ranking 

Among the tools that use a bottom-up approach for risk ranking evaluated in this opinion, the FDA-

iRISK model has been identified as the most appropriate for the needs of EFSA BIOHAZ Panel. FDA-

iRISK is a technically valid, fully quantitative tool providing meaningful risk metrics. It takes into 

account the main factors affecting risk and follows the risk assessment paradigm, while respecting the 

laws of probability and calculus. The FDA-iRISK tool has the best user interface among the tested 

tools in this opinion. Data in the correct format need to be estimated outside the tool, e.g. amount of 

growth, but can be entered and used easily in the tool. It is possible to model different steps in the food 

chain from farm to fork, providing flexibility in choosing different scenarios combining hazards, 

consumption patterns and processing stages. In addition, each model run can be saved and shared 

online with other users allowing effective quality assurance evaluation and comparison of different 

scenarios. 

The results of the evaluation of the FDA-iRISK (version 1.0, released October 2012) conducted in 

Section 3 were discussed with the FDA, with a special focus on the problems related to ignoring the 

maximum population density and the lack of separation between variability and uncertainty, which 

may significantly affect the risk ranking. The tool has been further developed to add a number of new 

features. These features include: setting growth of the pathogens with the maximum population 

density, an improved treatment of rare events, the ability to perform sensitivity analysis and the 

addition of new distribution options (e.g. beta, beta general, truncated normal). The development of a 

two-dimensional Monte Carlo simulation option for the explicit separation of uncertainty and 

variability, and a multi-food exposure assessment feature to characterise chronic exposure is planned 

for a subsequent update of the tool. Version 2.0 of FDA-iRISK is expected to be released early in 2015 

and the above new features are expected to significantly improve the utility of the tool. 

The present opinion proposes a further improvement of FDA-iRISK outputs by combining the FDA-

iRISK tool with the BCoDE tool for more detailed calculation of DALYs. In this approach, the output 

of the bottom-up FDA-iRISK tool expressed in total number of illnesses per year for a pathogen/food 

combination is used as an input in the BCoDE tool. The combination of the two tools leads to more 

realistic and detailed DALY estimates since it takes into account the variability and uncertainty of all 

variables, including gender and age group. A schematic representation of the combination of FDA-

iRISK with BCoDE is shown in Figure 26. 
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BCoDE: ECDC Burden of Communicable Diseases in Europe (toolkit); DALY: disability-adjusted life years. 

Figure 26:  Combination of FDA-iRISK output and BCoDE tool for a more effective estimation of 

DALYs 

microHibro can be considered as a future alternative option for risk ranking application by EFSA. As 

mentioned before, microHibro was initially developed as a microbial growth prediction tool, but with 

recent developments the model can be used for quantitative risk assessment and risk ranking. It has an 

advanced user interface and the user can design any step in the food chain from farm to fork allowing 

for effective data management and analysis of different scenarios combining hazards, consumption 

patterns and processing stages. However, since the function for risk ranking applications is in 

progress, the tool should be re-evaluated after completion of these developments. 

sQMRA was also evaluated as a technically valid, fully quantitative, bottom-up risk assessment tool. 

The main weakness of sQMRA is the Excel spreadsheet format, which makes file management very 

complex and quality assurance and comparison of different scenarios difficult. In case of the 

development of a more advanced interface of the tool in the future, it could be also considered as an 

alternative option for the BIOHAZ Panel. 

6.1.2. Semi-quantitative risk ranking: deterministic and ordinal scoring approach 

The examples tested in this opinion showed that the output of deterministic models for risk ranking 

that do not take into account the variability of the input parameters can be significantly different 

compared with the reference stochastic model. In addition, the results showed that the selected 

statistical value of input data (arithmetic mean, median, 75th and 90th percentiles) does affect the risk 

ranking. It is concluded that, as a general principle, among the different statistical values, the use of a 

high percentile provides the closest ranking to the stochastic reference model. The performance of 

different point estimates in a ranking assessment will depend on the specific food–pathogen 

combinations involved. However, in all cases, the ignorance of variability in the deterministic 

approaches resulted in significant ranking errors, which are higher towards the top of the list when 
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compared with the errors towards the bottom of the list. The latter is of great importance since the top 

of the ranking list is more significant from the risk management point of view. Therefore, it is 

recommended that more than one point estimate (e.g. arithmetic mean and a higher percentile) should 

be used as part of sensitivity analysis to compare rankings when using deterministic models. 

The opinion confirms the significant limitations of risk ranking models that use a semi-quantitative 

approach with ordinal scoring. Indeed, the performance of ordinal scoring models was found to 

deviate more from the stochastic reference model than did the deterministic models. In particular, 

when ordinal scoring is used, the food–pathogen pairs are placed into quite broad sets of categories 

and have huge risk differences compared with the reference quantitative stochastic model. The ranking 

using a log-scaled scoring system gives more categories but shows less similarity with the actual 

ranking than the ranking obtained with the ordinal scoring. Both rankings with linear and log-scaled 

ordinal scoring systems have more errors towards the top than the bottom of the list. 

In conclusion, semi-quantitative tools based on deterministic and ordinal scoring approach may lead to 

erroneous risk ranking. When no other options are feasible because of limitation of available data the 

deterministic approach, using a high percentile of actual data for the input parameters should be 

preferred since it showed significantly better performance than the ordinal scoring approaches. In the 

case of lack of data required for a stochastic or deterministic approach, an expert elicitation should be 

considered. In addition, decision trees should be used only as a tool for showing how decisions about 

classifying food–pathogen combinations into broad categories are made (e.g. inclusion/exclusion; 

high/low). 

6.2. Top-down approach 

BCoDE is a refined DALY calculator based on epidemiological data. When epidemiological data are 

available, the BCoDE toolkit is recommended for use by the BIOHAZ Panel. BCoDE was the only 

pure top-down risk ranking tool tested in this opinion and provides meaningful outputs such as 

DALYs, DALYs per case and DALYs per 100 000 cases. Risk ranking with BCoDE is based on a 

limited number of input parameters, namely the age group- and sex-specific number of cases, which 

reduces complexity of the tool while variability and uncertainty of all variables is taken into account 

using Monte Carlo simulation. As described in Section 2.8, it offers default values for the parameters, 

which can be modified by the user if specific data are available. The tool has an advanced user 

interface that allows effective data management and scenario analysis while outputs are presented in 

communication-friendly visualisations such as tables, bubble charts and bar charts. The current aim of 

BCoDE is to rank pathogens irrespective of transmission pathways. For its application in a food safety 

context, attribution of the proportion of cases transmitted by food and by specific food pathways 

(meat, dairy, produce, etc.) needs to be estimated separately. 

6.3. Combining the bottom-up and top-down risk ranking approaches 

Based on the experience of the EFSA BIOHAZ Panel, risk ranking of an increased number of 

pathogen/food combinations using a bottom-up quantitative approach is a laborious process and often 

difficult to complete within the usual time frame of the mandates. Thus, there is often a need to reduce 

the number of the food–pathogen pairs, focusing on those that present the greatest risk to public 

health. This opinion therefore proposes a combination of a bottom-up and top-down risk ranking 

approaches using the risk ranking tools FDA-iRISK and BCoDE, respectively. The combined 

approach starts with an initial priority ranking using the BCoDE tool, which limits the number of 

food–pathogen combinations based on the available epidemiological data. To complete this first step 

in a timely manner, an outsourced project may be needed for pathogen incidence attribution to foods 

and food categories at the EU level. In a second step, the number of pathogen/food pairs is further 

decreased, based on data and information in risk profiles including outbreaks, the microbial ecology, 

the growth ability of the pathogen, etc. In the later step, qualitative decision trees can be used as a tool 

for showing how decisions about classifying pathogens–food combinations into broad categories are 

made (e.g. inclusion/exclusion; high/low). In the last step, a quantitative bottom-up approach is 

applied to the remaining prioritised list of the pathogen/food combinations using the FDA-iRISK tool, 
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possibly combined with BCoDE for DALY estimation. The above steps are described in detail in the 

following diagrams for single pathogen–multiple food, multiple pathogens-single food and multiple 

pathogen–multiple food combinations (Figures 27, 28 and 29). 

 

BCoDE: ECDC Burden of Communicable Diseases in Europe (toolkit); DALY: disability-adjusted life years. 

Figure 27:  Steps of the combined bottom-up and top-down risk ranking approach using the respective 

risk ranking tools FDA-iRISK and BCoDE for single pathogen–multiple food combinations 

For a single pathogen/multiple foods question, the EU-wide population incidence and disease burden 

are estimated from surveillance data with appropriate multipliers and DALY models embedded in the 

BCoDE tool. Then, the proportion of disease cases and burden transmitted by food and by specific 

food groups are estimated using results from attribution studies. Such data are not yet available at the 

EU level, and a specific outsourced project could be considered to arrive at such estimates. A data-

based approach would be preferable, but in the short-term expert elicitation may offer the most 

comprehensive approach. The study should conform to the EFSA Guidance on Expert Knowledge 

Elicitation (EFSA, 2014) and could be based on the protocol developed for the WHO by the 
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Foodborne Disease Burden Reference Group, which is described as one of the case studies in the 

EFSA Guideline. 

Attribution data will assign the disease incidence and burden to broad food groups (to be further 

defined in the outsourced project), and may be the basis for not considering some food–pathogen pairs 

further. Risk profiles can be used to further limit the number of combinations to be quantitatively 

ranked using the FDA-iRISK tool, which will provide the final risk ranking output. 

 

BCoDE: ECDC Burden of Communicable Diseases in Europe (toolkit); DALY: disability-adjusted life years. 

Figure 28:  Steps of the combined bottom-up and top-down risk ranking approach using the respective 

risk ranking tools FDA-iRISK and BCoDE for multiple pathogens–single food combinations 

For ranking multiple pathogens in one food, the necessary epidemiological information needed as 

input for the BCoDE model and attribution data increase with the number of pathogens to be ranked. 

To improve efficiency, a proactive approach is suggested in which BCoDE models for key pathogens 

are developed as defaults by EFSA in collaboration with ECDC, while the outsourced attribution 
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project included the same pathogens. When this information is available, development of risk profiles 

can effectively be limited to pathogen/food pairs in the highest ranked combinations. As above, this 

would limit the number of combinations for quantitative ranking using FDA-iRISK. 

 

BCoDE: ECDC Burden of Communicable Diseases in Europe (toolkit); DALY: disability-adjusted life years. 

Figure 29:  Steps of the combined bottom-up and top-down risk ranking approach using the respective 

risk ranking tools FDA-iRISK and BCoDE for multiple pathogen–multiple food combinations 

If data and models needed for ranking single pathogens in multiple foods and multiple pathogens in 

single foods are available, the ranking of multiple pathogens in multiple foods is possible by following 

a combination of both approaches, although the workload to develop risk profiles and the number of 

pathogen/food pairs to evaluate using FDA-iRISK may increase considerably. 

Any of the approaches described previously require appropriate documentation of data and the models 

used. There should be a clear and structured way of documenting all decisions made throughout a risk 

ranking exercise. 
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6.4. Development of new tool for BIOHAZ 

The evaluation of the available tools showed a number of weak points and problems that may affect 

the risk ranking output. A main finding is that none of the available tools in their current form can 

describe uncertainty in risk ranking. Considering the importance of uncertainty in risk assessment 

showed in this opinion, as well as the other problems identified in the tested tools, this opinion also 

focused on the development of a new prototype risk ranking tool applicable to the whole chain, from 

farm to fork, for the EFSA BIOHAZ Panel. 

The prototype risk ranking tool was developed as a RExcel application which is an add-in for 

Microsoft Excel and allows access to the statistics package R within the Excel environment. RExcel 

includes features such as data transfer (matrices and data frames) between R and Excel in both 

directions, running R code directly from Excel, writing macros calling R to perform calculations 

without exposing R to the user and calling R functions directly from cell formulas, using Excel’s auto-

update mechanism to trigger recalculation by R. 

The prototype tool allows for a two-dimensional Monte Carlo simulation, providing the user with the 

ability to take into account both variability and uncertainty and also separate them. The prototype is 

based on a structure that takes into account all the factors affecting the risk and follows the risk 

assessment paradigm respecting the laws of probability and calculus. The tool can provide both 

deterministic and stochastic outputs for risk ranking using single values or distributions for the input 

parameters, respectively. In the stochastic application, the user can run the tool with variability only or 

with both variability and uncertainty. 

The structure of the prototype consists of four main sheets for the (1) input parameters, (2) growth 

parameters, (3) uncertainty inputs and (4) outputs as presented in Figures 30 to 33. 

The development of an advanced user interface for this prototype in the future which will allow an 

easy data management and scenario analysis can lead to an effective risk ranking tool for the EFSA 

BIOHAZ Panel. 

 

Figure 30:  Input parameters sheet of the prototype risk ranking tool 
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Figure 31:  Growth parameters sheet of the prototype risk ranking tool 

 

Figure 32:  Uncertainty inputs sheet of the prototype risk ranking tool 
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Figure 33:  Outputs sheet of the prototype risk ranking tool 

6.5. Networking of risk ranking tools with other available supporting tools, databases and 

information sources 

The experience of EFSA BIOHAZ Panel has shown that the collection of data required for the 

development of risk ranking models, currently performed via literature review, is among the most 

laborious and time-consuming process in risk ranking exercises. In addition, literature review usually 

creates problems in the documentation and the transparency of the risk ranking models. As an 

alternative, the risk ranking tools proposed for the EFSA BIOHAZ Panel’s use could be connected 

with other available tools, databases and information sources which can support the development of 

risk ranking models by exchanging models, data and information. 

6.5.1. Description available supporting tools, databases and information sources 

Apart from the risk ranking tools presented in this opinion, the last two decades of research has also 

focused on the systematic collection, description and modelling of food safety data, information and 

knowledge and their incorporation to user-friendly software and databases. A description of the above 

material, categorised based on the nature of support that can be provided to risk ranking is given 

below. 

6.5.1.1. Predictive microbiology software tools 

Predictive microbiology (PM) is an important part of risk assessment/ranking for the evaluation of the 

effect of food processing, storage and handling on the behaviour of pathogenic microorganisms. PM 

has established itself as a scientific discipline that uses mathematical equations to summarise and 

make readily available quantitative information on the microbial responses in various foods under 

different conditions (McMeekin et al., 2008). Development of models to predict survival, growth or 

inactivation of microorganisms in foods has been a most active research area within food 

microbiology during the last 25 years (Ross and Dalgaard, 2004). A considerable number of predictive 

microbiology software tools are today available to predict growth, survival and inactivation of 

microorganisms in foods and are described in the sections below. 
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Pathogen modelling program (PMP) 

PMP is available free of charge (http://portal.arserrc.gov/) and, with more than 5 000 downloads per 

year, it is probably the most widely used predictive microbiology application software. PMP has been 

available for close to 20 years and it is regularly updated and expanded. The present version includes 

more than 40 models for different bacterial pathogens. The software allows growth or inactivation of 

pathogens to be predicted for different combinations of constant temperature, pH, NaCl/aw and, in 

some cases, other conditions such as organic acid type and concentration, atmosphere or nitrate. In 

addition, PMP includes models that predict the effect of cooling temperature profiles on growth of 

Clostridium botulinum and Cl. perfringens after cooking. Predictions can be exported and the software 

contains references to studies from which the models were developed. In 2007, PMP was integrated 

with the Predictive Microbiology Information Portal (http://portal.errc.ars.usda.gov/). 

ComBase (combined database on predictive microbiology information)  

ComBase (www.combase.cc) is a web-based resource for Quantitative and Predictive Food 

Microbiology. Its main components are: a database of observed microbial responses to a variety of 

food-related environments and a collection of relevant predictive models. ComBase is managed by the 

ComBase Consortium consisting of the Institute of Food Research (IFR) in the United Kingdom, the 

US Department of Agriculture Agricultural Research Service (USDA-ARS) in the USA and the 

University of Tasmania Food Safety Centre (FSC) in Australia. The ComBase Predictive models are a 

collection of software tools based on ComBase data to predict the growth or inactivation of 

microorganisms. Currently available predictive tools include the following online applications: 

 ComBase Predictor, a set of 23 growth models and six thermal death models for predicting the 

response of many important food-borne pathogenic and spoilage microorganisms to key 

environmental factors. An Excel version of this web application can also be found in the 

ComBase Excel Demo provided in the website 

 Perfringens Predictor, an application specifically designed for predicting the growth of Cl. 

perfringens during the cooling of meats. An Excel Add-In version of the program can also be 

found in the downloads section of this website 

Sym’previus  

Sym’previus (www.symprevius.org) is an extensive French decision support system that includes (1) 

a database with growth and inactivation responses of microorganisms in foods and (2) predictive 

models for growth and inactivation of pathogenic bacteria and some spoilage microorganisms. 

Information from Sym’previus is available on a commercial basis through contact centres as indicated 

on the homepage cited above. 

Seafood spoilage and safety predictor (SSSP) 

The Seafood Spoilage and Safety Predictor (SSSP) software has been developed by Danish Technical 

University (http://sssp.dtuaqua.dk/HTML_Pages/Help/English/Index.htm) to facilitate the practical 

use of mathematical models to predict shelf life as well as growth of spoilage and pathogenic bacteria 

in seafood. SSSP v. 3.1 from August 2009 includes: four product-specific relative rate of spoilage 

(RRS) models, three generic RRS models, four product-specific microbial spoilage models, a generic 

model to predict microbial growth and shelf life, modules to compare predictions from SSSP with 

users own data of shelf life or growth of bacteria, models to predict growth and histamine formation 

by Morganella psychrotolerans and M. morganii, growth and growth boundary model for L. 

monocytogenes and a model to predict the simultaneous growth of L. monocytogenes and lactic acid 

bacteria in lightly preserved seafood. 

GroPIN modelling database 

GroPIN is an integrated tertiary model developed by Agricultural University of Athens (AUA) using 

Visual Basic for Applications (http://www.aua.gr/psomas/gropin/). The application may serve as a 

http://portal.arserrc.gov/
http://www.combase.cc/
http://www.symprevius.org/
http://sssp.dtuaqua.dk/HTML_Pages/Help/English/Index.htm
http://www.aua.gr/psomas/gropin/
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user-friendly and highly transparent predictive modelling database for kinetic (growth or inactivation) 

and probabilistic models. The current version of GroPIN has a total of 490 published models for the 

behaviour of 22 pathogens and 50 spoilage organisms, including spoilage and mycotoxigenic fungi, 

bacteria and yeasts in various foods of plant (e.g. fresh-cut salads, deli salads, berries, juices, etc.) or 

animal origin (meat and meat products, dairy products). The impact on microbial behaviour of a 

variety of critical and commonly encountered intrinsic (preservatives, organic acids in total or 

undissociated/dissociated form, salt, aw, nitrates, etc.) and extrinsic (temperature, CO2, pressure, 

anaerobic conditions) factors is accounted for by the models registered in GroPIN up to date. The 

microbial responses modelled (i.e. dependent variables) include the maximum specific growth rate, the 

death rate, the lag phase duration, maximum population density, time to X-log reduction/growth, D-

values and the probability of growth. The spirit of the software stems from similar initiatives, such as 

Sym’previus and COMBASE modelling toolbox. The major innovative features of this software in 

relation to the state-of-the art are the user-friendliness, the updatable character by the user, the 

simplicity and functionality (including interactive options) of outputs and the inclusion of all major 

predictive modelling classes. 

Refrigeration index calculator 

Refrigeration index (RI) calculator was developed by Meat & Livestock Australia Limited 

(http://www.foodsafetycentre.com.au/refrigerationindex.php). It predicts the expected growth of E. 

coli on meat from temperature and other data. The model has values for pH, aw and lactate 

concentration which in addition to temperature, all affect the growth rate of E. coli. The current RI 

model allows for the user to enter data on temperatures of the product over time. The other parameters 

are set by choosing the type of product. 

Opti-Form@ Listeria control model 2007 (PURAC) 

This software predicts the effect of organic acids, temperature, pH and moisture on growth of L. 

monocytogenes in meat products. The software can be requested from the PURAC company 

(http://www.purac.com/purac_com/d9ed26800a03c246d4e0ff0f6b74dc1b.php). 

Shelf stability predictor 

The software has been developed by the Center for Meat Process Validation at the University of 

Wisconsin (Madison, USA) (http://meathaccp.wisc.edu/ST_calc.html) and provides a set of models for 

predicting the growth of L. monocytogenes and S. aureus on RTE meat products as a function of pH 

and water activity. 

THERM (temperature history evaluation for raw meat) 

Developed by the Center for Meat Process Validation at the University of Wisconsin (Madison, USA) 

(http://meathaccp.wisc.edu/). THERM is an online tool designed for evaluating the safety of meat or 

poultry at temperatures between 50 °F and 115 °F (10 °C to 46 °C) 

Process lethality determination spreadsheet 

Developed by AMI Foundation, USA, (http://www.amif.org/ht/d/sp/i/26870/pid/26870) this tool 

provides processors with a science-based validation tool that can be used to demonstrate the 

effectiveness of a specific heat process to destroy a microorganism of concern. Specifically, the 

interactive model allows the user to input actual in-process data from a given cook cycle and 

determine if the process achieves the required log reduction for the microorganism of concern. The 

goal is to define or map the heating and cooling profile of the product by observing the temperature 

characteristics of the product during heating and cooling. 

http://www.foodsafetycentre.com.au/refrigerationindex.php
http://www.purac.com/purac_com/d9ed26800a03c246d4e0ff0f6b74dc1b.php
http://meathaccp.wisc.edu/ST_calc.html
http://meathaccp.wisc.edu/
http://www.amif.org/ht/d/sp/i/26870/pid/26870
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6.5.1.2. Databases that can provide input data for risk ranking 

EFSA zoonoses, antimicrobial resistance and food-borne outbreaks 

EFSA analyses data on zoonoses, antimicrobial resistance and food-borne outbreaks across the EU. 

Data are submitted annually by the MS. Zoonoses are infections and diseases that are transmissible 

between animals and humans. EFSA publishes, in collaboration with the ECDC, annual Community 

Summary Reports based on these data. ECDC provides for and analyses data on the zoonoses cases in 

humans. The latest report covers 18 zoonotic infections. Moreover, EFSA analyses the EU-wide 

baseline surveys on zoonotic agents, such as Salmonella and Campylobacter, in animal and food-

populations and on antimicrobial resistance. These surveys are fully harmonised and therefore provide 

comparable values for all MS. Survey results are used to set EU reduction targets or to consider needs 

for specific actions at EU-level. The EFSA Zoonoses, antimicrobial resistance and food-borne 

outbreaks database can provide data for prevalence and concentration of pathogens in a bottom-up risk 

ranking approach as well as epidemiological data for top-down risk ranking. 

FOSCOLLAB: a global platform for food safety data and information 

FOSCOLLAB (http://www.who.int/foodsafety/foscollab/en/) is a new WHO platform for food safety 

professionals that enables users to: (1) access food safety data and information quickly, (2) maximise 

the utility of already existing sources and minimise duplication of effort, (3) integrate data and 

information coming from animal/agriculture, food and human health areas to improve global public 

health, (4) promote better generation of data, and (5) strengthen the underlying sources by promoting 

awareness and increased utilisation. By integrating multiple sources of reliable data, FOSCOLLAB 

helps overcome the challenges of accessing these key sources in a timely manner. It allows for better 

risk assessment and decision-making by food safety professionals and authorities. 

The EFSA Comprehensive European Food Consumption Database 

The Comprehensive Food Consumption Database is a source of information on food consumption 

across the EU. It contains detailed data for a number of EU countries. The database plays a key role in 

the evaluation of the risks related to possible hazards in food in the EU and allows estimates of 

consumers’ exposure to such hazards, a fundamental step in EFSA’s risk assessment work. Summary 

statistics from the database enable quick screening for chronic and acute exposure. In the database, 

dietary surveys and food consumption data for each country are divided by category. These include: 

age, from infants to adults aged 75 years or older; food group (nearly 160) and type of consumption, 

covering both regular and high consumption thus allowing calculations to be tailored to each category 

of consumer. The statistics on food consumption are reported in grams per day, as well as grams per 

day per kilogram of body weight. 

Food Commodity Intake Database (FCID) (http://fcid.foodrisk.org/)  

The Food Commodity Intake Database (FCID) was developed by US EPA’s Office of Pesticide 

Programs (OPP) to improve the utility of the food consumption survey for dietary exposure 

assessment. FCID 2003–2008 translates food consumption as reported eaten in What We Eat in 

America (WWEIA) (1999–2008 survey cycles) and Continuing Survey of Food Intakes by Individuals 

(CSFII) (1994–1996/1998) surveys into consumption of US EPA-defined food commodities. Such 

food commodity intakes are expressed as grams of food commodity consumed per kilogram of body 

weight per day for over 500 commodities derived from more than 6 000 different foods and beverages 

reported in the two surveys. WWEIA-FCID 2003–2008 is intended to complement the CSFII and 

National Health and Nutrition Examination Survey (NHANES)/WWEIA databases in that it provides 

estimates of food consumption expressed as food commodities as opposed to foods per se (i.e. “as 

eaten”) which can in some exposure and other situations be of more utility. The database also includes 

WWEIA 2003–2008 food consumption and demographic data that are available through CDC’s 

National Center for Health Statistics. FCID can provide risk ranking models with consumption data. 

http://www.who.int/foodsafety/foscollab/en/
http://fcid.foodrisk.org/


Development of a risk ranking toolbox for the EFSA BIOHAZ Panel 

 

EFSA Journal 2015;13(1):3939 109 

The European Surveillance System (TESSy) 

TESSy (http://www.ecdc.europa.eu/en/activities/surveillance/tessy/Pages/TESSy.aspx) is a highly 

flexible metadata-driven system for collection, validation, cleaning, analysis and dissemination of 

data. Its key aims are data analysis and production of outputs for public health action. All EU MS (28) 

and EEA countries (3) report their available data on communicable diseases (49), as described in 

Decision No 2119/98/EC, to the system. Apart from routine surveillance, TESSy has replaced data 

collection systems in place for the Dedicated Surveillance Networks (DSNs) to provide experts with a 

one-stop shop for EU surveillance data. Prior to May 2005, when ECDC was established, there were 

17 DSNs that collected data on a variety of diseases. All MS submitted data individually to every 

DSN, using different file specifications. The TESSy database can be a source for epidemiological data 

for top-down risk ranking approaches. 

FRISBEE 

FRISBEE (http://frisbee-project.eu) is a Food Refrigeration Innovation for Cold Chain research IP 

European project. Within FRISBEE, the Cold Chain Database (hosted in the link http://www.frisbee-

project.eu/coldchaindb.html/) has been built for data collection of temperature conditions throughout 

the food supply chain for different chilled and frozen food products. A systematic data collection for 

identification and evaluation of the weak links of the cold chain for different types of chilled and 

frozen products took place. Data from industry, cold chain parties (distributors, retailers) and 

consumer surveys, including all stages of the cold chain (from production to consumption) were 

collected. The Cold Chain Database has been constructed in order to develop a user-friendly online 

platform where collected data are retrievable and available to be used from candidate users. Registered 

Cold Chain Database users are able to retrieve specific time–temperature profiles using a multi-search 

criteria search engine. Stage/step of the cold chain, food storage temperature range, characterisation of 

food, food products, etc., are included in the available search criteria. At present, the Cold Chain 

Database consists of more than 11 500 time–temperature profiles and is being continuously updated 

with new data uploaded from an expanding network of contributors. In this database, the user can 

build a specific sequence of cold chain stages for specific food products based on user-defined search 

criteria. The Cold Chain Database can be used in combination with available predictive microbiology 

tools for the quantitative evaluation of pathogen’s growth and/or survival during chilled storage and 

distribution. 

6.5.1.3. Other risk assessment information sources 

FoodRisk.org 

FoodRisk.org is a repository for risk assessment data, information and tools. It is operated by Joint 

Institute for Food Safety and Applied Nutrition (JIFSAN) in collaboration with the Center for Food 

Safety and Applied Nutrition from US FDA (CFSAN/FDA) and the Food Safety and Inspection 

Services from USDA (FSIS/USDA). The aim of FoodRisk.org is to assist professionals involved with 

the many aspects of risk analysis as it pertains to the safety of our food. FoodRisk.org includes unique 

datasets, tutorials, tools and links to numerous sources of information. The goals identified for 

Foodrisk.org to date include consolidating risk analysis research data and methodology from public 

and proprietary sources, assisting coordination of research activities, identifying gaps in needed 

research and assisting the development of food safety risk assessment models. While initial emphasis 

was on microbial pathogens and their toxins, this is being expanded to other chemicals and toxins. 

ICRA interactive online catalogue on risk assessment 

The interactive online catalogue on risk assessment (ICRA) (http://icra.foodrisk.org/) is a repository of 

risk assessment models. ICRA was funded by the National Institute for Food and Agriculture (NIFA) 

of the USDA. It is a partnership between the National Institute for Public Health and Environment 

(RIVM) in the Netherlands, the National Food Institute (DTU Food) at the Technical University of 

Denmark, and JIFSAN at the University of Maryland. ICRA serves as a web tool offering a dynamic 

model catalogue for existing microbial risk assessments for risk assessors aiming to develop their own 

http://www.ecdc.europa.eu/en/activities/surveillance/tessy/Pages/TESSy.aspx
http://icra.foodrisk.org/
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models. ICRA allows users to compare and contrast models from the same pathogen and/or 

commodity. ICRA relies on contributions from risk assessors and modellers around the world to 

submit their models, populating the online catalogue. 

6.5.2.  Communication between risk ranking tools for EFSA BIOHAZ Panel use and other 

available supporting tools, databases and information sources 

As described above, there is an increasing number of predictive microbiology software tools, 

databases and other information sources that could be used for extracting input data required for the 

development of risk ranking models using the tools proposed for EFSA. Of course, the use of above 

data requires validation for its applicability in each risk ranking exercise. After validation, the 

exploitation of the above supporting material could increase the transparency and reduce significantly 

the time required for performing a risk ranking. However, an important limitation for this is that up till 

now data and information exchange is difficult because of the lack of communication. The 

harmonisation of terms and concepts as well as the generation of information exchange formats are 

important issues in the field of food safety. The development of a communication language which will 

include a common file format for exchange of models/data/information as well as standards for 

description and documentation will allow an effective information exchange. Recently, the project 

“OpenML for Predictive Modelling in Food” was initiated (http://sourceforge.net/projects/

microbialmodelingexchange/) as a community effort to establish an open information exchange data 

standard to facilitate free information exchange between different software tools developed within the 

community of predictive modelling in food. The extension of such initiations to risk assessment and 

the harmonisation of all related sources could lead to an effective toolbox of the risk 

assessment/ranking tools such as the FDA-iRISK and BCoDE combined with a supporting network of 

predictive microbiology tools and databases (Figure 34). 

 

Figure 34:  Representation of the risk assessment/ranking toolbox consisted of the FDA-

iRISK/BCoDE tools and a supporting network of predictive microbiology tools and databases   
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CONCLUSIONS AND RECOMMENDATIONS 

CONCLUSIONS 

ToR1. To evaluate the performance and data requirements of the available risk ranking tools 

 Eight tools relevant to risk ranking applications of biological hazards in food were identified: 

decision trees; the United States Food and Drug Administration (US-FDA) risk ranking tool; the 

pathogen–produce pair attribution risk ranking tool (P3ARRT); the EFSA food of non-animal 

origin risk ranking tool (EFoNAO-RRT); Risk Ranger; microHibro; swift quantitative 

microbiological risk assessment (sQMRA); FDA-iRISK and the European Centre for Disease 

Prevention and Control (ECDC) Burden of Communicable Diseases in Europe (BCoDE) toolkit. 

 A detailed description of the tools, based on the conceptual risk ranking framework developed by 

the BIOHAZ Panel and their use in two risk ranking case studies showed clear differences among 

them related to the risk metrics, the ranking approach, the model type, the model variables and 

data integration method. 

 Risk ranking tools have different data requirements, and empirical data requirements increase 

moving from qualitative to quantitative risk ranking approaches. 

 Due to the differences in the tools, they provide different ranking results when applied to the case 

studies of single pathogen–multiple foods (Listeria monocytogenes in ready-to-eat (RTE) foods) 

and multiple pathogens in a single food (leafy greens). 

 The selection of the risk metric was found to significantly affect the risk ranking because the 

metrics measures different things, for example probability of illness versus public health burden 

(disability-adjusted life years (DALYs)). Summary measures of public health such as DALYs 

integrate disease incidence, severity and mortality in a single number. 

 Decision trees provide an arbitrary outcome and have very limited discrimination power for risk 

ranking. However, they have fewer data and time requirements and can be used to increase 

transparency when classifying risks into broad categories. 

 Fully quantitative stochastic models are the most reliable for risk ranking. However, this approach 

needs a good characterisation of the input parameters. 

 The use of deterministic models that ignore variability may result in risk ranking errors, which 

may be greater for the food–pathogen combinations with the highest risk, as shown in the 

example. 

 In deterministic approaches, the selection of the point estimate used in the model can affect the 

risk ranking. Among different possible point estimates (arithmetic mean, median, 75th and 

90th percentiles), the use of a high percentile provides, in general, ranking results which are most 

similar to a stochastic model. However, the performance of different point estimates in a ranking 

assessment will depend on the data input for the specific food–pathogen combinations involved. 

 When using semi-quantitative models with ordinal scoring, the food–pathogen combinations are 

classified into broad sets of categories with little discrimination. There are considerable 

differences in risk ranking compared with a quantitative stochastic model. The ordinal scoring 

approaches provide ranking with more errors than the deterministic approaches. 

 Among the quantitative tools that use a bottom-up approach for risk ranking, FDA-iRISK has been 

identified as the most appropriate for the needs of EFSA BIOHAZ Panel. FDA-iRISK is a 

technically sound, quantitative tool providing meaningful risk metrics, allowing effective data 

management and scenario analysis. 

 The evaluation of the FDA-iRISK identified some limitations including the omission of a 

maximum population density and the lack of uncertainty assessment. A new version of the FDA-

iRISK addressing most, if not all, of these issues is expected to be available early in 2015. 
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 BCoDE is a flexible, detailed and user-friendly DALY calculator that can be used as a top-down 

tool based on epidemiological data to rank pathogens. It is possible to generate additional disease 

models or scenarios according to the foods that are evaluated and data that are available. 

 The performance of the risk ranking tools selected was evaluated from a statistical/theoretical 

perspective. Their implementation in practice may be constrained by limitations in data, time and 

resources. 

ToR2. To investigate methodologies for introducing uncertainty and variability in the risk 

ranking models 

 Uncertainty in risk assessment and risk ranking has been defined by the EFSA as “all types of 

limitations in knowledge, at the time it is collected”. 

 Uncertainty may arise from several factors in the risk assessment/ranking and includes technical 

(inexactness), methodological (unreliability), epistemological (ignorance) and societal (limited 

social robustness) aspects. 

 Uncertainty in risk ranking needs to be carefully addressed and communicated to decision makers 

and stakeholders as one of the outcomes of the risk ranking process. 

 Different typologies of uncertainty are available and provide a framework to identify and 

characterise all sources of uncertainty in a risk assessment/ranking model, and to identify how to 

evaluate them on their own scale and their impact on the outcomes of the risk assessment/ranking. 

 The NUSAP (numeral, unit, spread, assessment and pedigree) system aims to characterise and 

prioritise sources of uncertainty in a risk assessment/ranking model. NUSAP is a generic method 

that can be applied to all types of models and provides standardised scales for description of 

uncertainty in various dimensions. 

 NUSAP uses expert judgement to evaluate the impact of uncertainty in individual model factors 

on the outcome of the assessment, leading to a prioritisation of factors for further work (e.g. 

sensitivity and scenario analysis, or stochastic modelling). 

 The combination of uncertainty typology and NUSAP helped to systematically identify and 

evaluate the uncertainty sources related to model outcomes and to assess their impact on the end 

results in a case study, using EFoNAO-RRT. 

 Applying the NUSAP method requires training of the experts involved to overcome ambiguity of 

language in the pedigree scales. 

 Uncertainty in rank orders cannot be formally quantified using qualitative or semi-quantitative 

ranking methods even though these are often applied in situations where data are limited. 

 Uncertainty and variability in risk ranking can be represented by means of probability 

distributions, for example using two-dimensional Monte Carlo simulations. However, probabilistic 

representation is difficult when sufficient data are not available for statistical analysis. Expert 

elicitation procedures to incorporate diffuse information into the corresponding probability 

distributions may be adopted. 

ToR3. To design and develop a risk ranking toolbox for the EFSA BIOHAZ Panel 

 BCoDE and FDA-iRISK can be the basis of a risk ranking toolbox for use by the BIOHAZ Panel, 

which can be applied based on a “fit for purpose” approach. 

 The validity and utility of the tools can vary depending on, for example the scope of the risk 

question in terms of the resolution needed, resource constraints and the availability of data. 

Consequently, tiered or step-wise approaches can be useful. 
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 When sufficiently accurate data are available for a fully bottom-up quantitative model and a 

limited number of food–pathogen combinations are to be ranked, FDA-iRISK can be used. Output 

from FDA-iRISK can be combined with BCoDE for a more effective calculation of DALYs. 

 When surveillance epidemiological data are available, the BCoDE toolkit is appropriate for use by 

the BIOHAZ Panel for a top-down risk ranking approach. In this case, attribution of specific 

transmission pathways is needed as input for BCoDE. For this purpose, an EU-wide attribution 

study is needed, for example by expert elicitation. 

 When many pathogen/food combinations are to be ranked, the application of a combined bottom-

up and top-down risk ranking approach using the risk ranking tools FDA-iRISK and BCoDE, 

respectively, is more appropriate. The combined approach includes an initial priority ranking using 

the BCoDE tool, which limits the number of pathogens based on available epidemiological data. 

In a next step, the number of food–pathogen combinations is further decreased based on data and 

information of their risk profiles. In the last step, a quantitative bottom-up approach is applied for 

the remaining food–pathogen combinations using the FDA-iRISK tool. 

 The evaluation of the available tools showed that none of them in their current form takes into 

account uncertainty in risk ranking. Considering the importance of uncertainty, a new prototype 

risk ranking tool for the EFSA BIOHAZ Panel was developed as a RExcel application. The 

prototype tool allows for a two-dimensional Monte Carlo simulation providing the user with the 

ability to take into account and separate variability and uncertainty. Future development of this 

prototype is needed before it can be used as an effective risk ranking tool for the EFSA BIOHAZ 

Panel. Necessary developments include a better user interface that will allow easier data 

management and scenario analyses. 

 The risk ranking tools proposed for EFSA BIOHAZ Panel in combination with a network of 

available predictive microbiology tools, databases and information sources can form a risk ranking 

toolbox. This toolbox will support the timely and transparent development of risk ranking by 

allowing access to models, data and information. 

RECOMMENDATIONS 

 Risk metrics used in risk ranking should have a meaningful biological or epidemiological 

interpretation and have to be agreed with the risk managers before starting the risk ranking 

exercise. 

 Decision trees should only be used as a tool for showing how decisions about classifying 

pathogens–food combinations into broad categories are made (e.g. inclusion/exclusion; high/low). 

 Quantitative risk ranking models respecting the rules of probability calculation and describing 

correctly the main biological phenomena that determine the risk are preferred over semi-

quantitative models with ordinal scoring. 

 Quantitative risk ranking models should preferably include variability. If this is not possible, 

deterministic models may be used, where more than one point estimates (e.g. arithmetic mean and 

a higher percentile) should be used as part of sensitivity analysis to compare rankings. 

 A framework encompassing uncertainty typology and evaluation (for example by NUSAP) should 

preferably be part of each risk ranking process to formalise discussions on uncertainty, considering 

practicality and feasibility aspects. 

 In the absence of representative and accurate data describing the variability and uncertainty, expert 

knowledge elicitation should preferably be carried out to assess the uncertainty about the key input 

parameters (identified using sensitivity analysis or the NUSAP approach for example). 

 When data and time constraints do not allow quantitative risk ranking, semi-quantitative models 

could be used. In this case, the limitations of these approaches linked to the selection and 

integration of the ordinal scores, as identified in this opinion, should be made explicit. 
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 A strategy should be developed to progressively adopt the proposed methods in future risk ranking 

opinions developed by the BIOHAZ Panel. 
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Appendix A.  Additional information about risk ranking tools 

FDA-iRISK 

Graphical representation of how the inputs are integrated in the FDA-iRISK tool 

 

Figure 1:  Integration of inputs in FDA-iRISK 

Examples of the FDA-iRISK interface 
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BCoDE 

Examples of BCoDE results  
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ABBREVIATIONS 

ADALY Annual DALY 

API Annual probability of illness 

APIll Average probability of illness 

BCoDE ECDC Burden of Communicable Diseases in Europe 

BIOHAZ Panel EFSA Panel on Biological Hazards 

CD Communicable Disease 

CDF Cumulative distribution function 

CFU Colony-forming unit 

DALY Disability adjusted life years 

ECDC European Centre for Disease Prevention and Control 

EFoNAO EFSA food of non-animal origin 

EFoNAO-RRT EFSA food of non-animal origin risk ranking tool 

EFSA European Food Safety Authority 

EU European Union 

FCID Food Commodity Intake Database 

FR Frequency of consumption 

GBD Global Burden of Disease 

IllD50 The dose needed to cause illness in 50 % of exposed humans 

JIFSAN Joint Institute for Food Safety and Applied Nutrition 

MS Member State(s) 

NHANES National Health and Nutrition Examination Survey 

NUSAP numeral, unit, spread, assessment and pedigree 

P3ARRT the pathogen–produce pair attribution risk ranking tool 

PDF Probability density function 

PMP Pathogen modelling program 

QPR Qualified Presumption of Risk 

RI Refrigeration index 

RTE Ready-to-eat 

sQMRA swift Quantitative Microbiological Risk Assessment 

STEC Shiga toxin-producing Escherichia coli 

TESSy The European Surveillance System 

US United States 

US-FDA United States Food and Drug Administration 

WWEIA What We Eat in America 

YLD Years lived with disability 

YLL Years of life lost due to premature mortality 
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