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Executive summary 
Crimean-Congo haemorrhagic fever (CCHF) is a tick-borne viral (Nairovirus, family Bunyaviridae) infection first 
identified in the Crimean region in 1944. It is one of the most widely distributed arboviral diseases in the world, 
ranging from southern Russia and the Black Sea region to the southern tip of Africa. The disease is considered as 
‘emerging’ across the globe, with many countries reporting new CCHF cases in humans in recent decades, 
including Georgia, Türkiye, Albania and, most recently, Spain. 

The distribution of CCHF was modelled globally in 2015 by Messina et al [1] and in 2020 by Okely et al [2] through 
ecological niche modelling, a technique which uses statistical correlations of presence and absence data with 
environmental variables such as temperature and landcover to spatially predict the ecological suitability (i.e. the 
probability of presence and absence) for the species or disease of interest in an area. Messina et al. predicted high 
probability areas for autochthonous disease to be in parts of eastern and southern Europe. It also predicted high 
ecological suitability for CCHF in areas of Spain, which was, however, hidden from view (masked) in the published 
distribution as the disease had then yet to be found in Iberia. The 2015 model also did not take into account the 
likely distributions of its main tick vectors in Europe, namely Hyalomma marginatum and H. lusitanicum. The Okely 
et al. study showed updated risk areas which included Spain, and also statistically compared the distribution of 
environments assessed as ecologically suitable for autochthonous acquisition of CCHF human disease to that of the 
primary tick vectors. Still, these vector distributions were not used to modify or mask (by hiding areas predicted to 
be environmentally suitable from view where the vectors are not present) the maps depicting environments 
assessed as ecologically suitable for autochthonous acquisition of human CCHF. 

ECDC therefore asked that the 2015 modelled distributions of likely areas for autochthonous acquisition of CCHF 
for Europe and its neighbouring areas be re-estimated and updated, taking into account both the recent disease 
occurrence data and the distribution of its vectors. Two sets of spatial modelling were performed, both using a 
common covariate predictor data suite and long-established spatial modelling techniques. These models were a) 
for CCHF itself using Boosted Regression Trees (BRT), as used in 2015, and trained on presence data extracted 
from the published literature and statistically assigned pseudo-absence data, and b) for the two vector species 
using an ensemble of Random Forest and Boosted Regression Tree models, trained on presence data provided by 
the ECDC VectorNet project, other online databases and absence data based on calculated habitat suitability.  

As the CCHF occurrence in Europe is too limited to establish reliable statistical correlations between CCHF presence 
and absence data in Europe and environmental covariates, the global distribution of the disease – including 
Europe, Africa, and Asia – was modelled, based on the assumption that a global model better informs a predicted 
distribution for Europe and its neighbouring areas.  

The resulting model suggests substantially more areas with ecological suitability for autochthonous CCHF in Europe 
and its neighbouring areas than did the 2015 model, largely because more disease records were found in Albania, 
Greece, Spain, and Western Asia. The environmental suitability for autochthonous acquisition of the disease 
extends into much of northern Europe and the northern Caucasus – significantly beyond the vector distributions, 
which at worst restrict its northern range to about 49oN (latitude of Paris, France).   

The vector distribution models allow for refined mapping of areas of ecological suitability for autochthonous 
acquisition of CCHF compared to 2015 (where entire countries were masked out) by hiding (only) those areas in the 
basic CCHF spatial model from view (i.e. masking) where no vectors are present. When using the minimum predicted 
vector distribution as the mask, hiding a larger area with CCHF predicted suitability from view, much of the 
Mediterranean seaboard, the Balkans along with Türkiye and the Caucasus are predicted to be have patches suitable 
for CCHF. However, using the maximum predicted vector distribution as a mask, the resulting CCHF ecological 
suitability map matches the observed disease occurrences most closely, and on that map, the predicted suitability for 
CCHF extends significantly further north into parts of central France and eastward into central Europe.  

This suggests that a number of countries that have yet to record CCHF may benefit from paying attention to this risk 
– especially those with Mediterranean coastlines. In comparison to the (masked) 2015 model, while much of Europe’s 
ecological suitability for CCHF remains similar in this updated model, several subnational regions show increased 
ecological suitability for CCHF, particularly pockets throughout France, Italy, Spain, the Balkans, and the Caucasus. 
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Background 
Crimean-Congo haemorrhagic fever (CCHF) is a tick-borne viral (Nairovirus, family Bunyaviridae) disease first 
identified in the Crimean region in 1944 [3,4]. It was subsequently shown to be the same virus as that causing 
similar haemorrhagic disease outbreaks in the Congo basin, giving the virus its current name [5,6]. CCHF is a 
widely distributed disease, ranging from eastern China to southern Russia and the Black Sea region, and to the 
southern tip of Africa [6]. 

The disease is considered as ‘emerging’ across the globe, with many countries reporting infections in humans in 
recent decades, including Albania (first occurrence in 2001) [7], Türkiye (in 2002) [8], Georgia (in 2009) [9], and 
Spain (in 2013) [10]. In some regions, human CCHF infection has also been recently reported after long periods of 
absence, for example in south-western Russia [11] and central Africa [12].  

The disease is transmitted to humans by ticks, and while no apparent disease manifestation occurs in animals [13], 
both wild and domesticated animals represent an important link in the disease transmission cycle, acting as 
reservoirs for continued tick re-infection. Many tick species can carry CCHF virus (CCHFV), but members of the 
genus Hyalomma are considered the primary vectors and are the most common ticks known to transmit the virus 
to humans. In Europe, the relevant species are Hyalomma marginatum and Hyalomma lusitanicum [14]. These 
ticks are adapted to hot and dry or semiarid environments, and are found in many parts of Africa, Asia, and Europe 
[3,15–18]. Infection of humans is uncommon, although those living or working in close proximity to livestock are at 
greater at risk, and if infected then fatality can be as high as 40% [ref]. No CCHF-specific antiviral drug or vaccine 
currently exists for animals or humans. 

The distribution of CCHF was modelled globally in 2015 by Messina et al. [1], a study which predicted 
autochthonous disease to be possible in parts of eastern and southern Europe. While the 2015 model successfully 
predicted that Spain was suitable for CCHF, the published outputs were adjusted so that ecological suitability for 
CCHF was only shown in countries that had reported cases. Spain was not shown as an area of ecological 
suitability in these outputs from the 2015 modelling, since the first case was (retroactively) reported in 2016 [19]. 
In addition, predictions of potential autochthonous CCHF distribution from other authors have become available 
[2]. The 2015 model also did not incorporate vector distributions in the disease predictions. Therefore, ECDC 
identified the need to update the earlier modelling exercise using up-to-date known distribution data to train (or 
calibrate) the model and including distributions for the two main European vectors (H. marginatum and H. 
lusitanicum) as additional disease model masks, to hide areas with predicted ecological CCHF suitability from view 
where the vectors are not present. 

Methods 
Overview 
The modelling process involves establishing a statistical relationship between known presence (or absence) and the 
values of a series of selected predictor covariates. These relationships are calculated for a set of sample locations, 
and the estimated equations then applied to maps of the covariates which provide values at a pixel resolution for 
the entire area of interest. This results in a modelled spatial distribution showing the probability of presence at the 
resolution of the covariate maps – which were standardised in this project at 1 kilometre.  

Two sets of spatial models were implemented for this study – one for CCHF in humans, and one for CCHF vectors, 
with the specific objective of providing predictions of areas ecologically suitable for autochthonous CCHF transmission 
to occur, for Europe and its neighbouring areas as far east as the Caspian Sea and to include northern Africa. 

The distribution of the disease within Europe is somewhat restricted and the number of disease locations provides 
insufficient training data to run an effective model for the region. It was therefore necessary to run the disease 
model based on data from all countries globally to generate more robust estimates of the ecological correlates of 
autochthonous CCHF cases, which can then be applied to Europe to predict potential areas of ecological suitability 
in Europe. 

While there are a number of different CCHF vector species within the global range of the disease, only two are 
widespread in Europe, namely H. marginatum which is found throughout southern Europe, the Middle East and 
northern Africa as far east as India; and H. lusitanicum which is limited to south-western Europe and neighbouring 
parts of northern Africa (e.g. Kolonin (2009) [20], Estrada-Pena et al. (2012),[21] VectorNet project [22]). The 
vectors were each modelled for their entire ranges plus a buffer zone (an area around the range boundary) of at 
least 200 km wide. 

The methods used to generate vector and disease models were similar (see above) and the driver covariates offered to 
the models were drawn from the same standard covariate suite that has been used in modelling a range of vectors for 
ECDC and the European Food Safety Authority (EFSA) [23]. These covariates include indicators of level and seasonality 
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derived from MODIS satellite imagery time series using Temporal Fourier Analysis [24] for day and night land surface 
temperature (LST), vegetation indices, middle infrared and relative humidity; and for rainfall derived from the European 
Centre for medium Term Weather Forecasting (ECMWF) datasets. Consensus land use, as well as topographic and 
demographic variables were also part of the covariate suite. These are set out in detail in Supplementary Table 2 in the 
Annex. All datasets were standardised to ensure consistent spatial resolution and extent. 

Vectors 
The vector spatial distribution modelling was performed using both Random Forest (RF) and Boosted Regression 
Trees (BRT) implemented through the VECMAP® Software Suite (AVIA-GIS, Belgium), to model presence and 
absence, producing estimates of the probability of presence. Five replicates of each method, with a 25% holdback, 
were run, and the results combined to produce ensemble mean, median, minimum and maximum predictions of 
probability of presence. The combination of methods tends to reduce a tendency for BRT to overfit, especially for 
training data covering relatively restricted areas such as that available for H. lusitanicum. 

These methods require approximately equal numbers of presence and absence points to be offered to each 
modelling run. The occurrence data were obtained primarily from VectorNet [22] shown in Supplementary Figure 
10, supplemented by a very limited number of records from the Global Biodiversity Information Facility (GBIF, 
https://www.gbif.org). The VectorNet data consisted of both point and polygon data, differentiated into present, 
absent and introduced categories. This last category represents records of temporary presence – often from 
migratory birds and are not indicative of established populations. They were therefore discarded. Five points were 
defined for each polygon and assigned as present or absent according to the polygon status, and to these were 
added any point data from either VectorNet or GBIF.  

The available vector data did not include the requisite number of absence points, so these needed to be generated. 
There are a number of geostatistical ways absences can be generated (as used for the disease modelling below), 
but for these vectors, it has been possible to produce habitat suitability layers based on environmental thresholds. 
This means that, for vectors, it is possible to assign absences to areas defined as unsuitable.  

A location was defined as suitable for each vector as indicated in Supplementary Table 1, and mapped in 
Supplementary Figure 11. These were taken from a number of published sources [21,25–32] and from personal 
communications with expert colleagues. While both species do well in most woodland, grassland, shrubland and 
cropland environments, only H. lusitanicum occupies dense woodland and only H. marginatum is associated with 
sparse vegetation. Though H. marginatum does require minimum temperatures though the summer and needs 
relatively moist conditions, H. lusitanicum is able to occupy areas with hotter and drier summer conditions and 
requires a relatively warm autumn. 

Once the ecologically suitable and unsuitable areas had been defined, and following the methodology used in Wint et 
al. (2020) [23], for H. lusitanicum, absence points were randomly assigned to unsuitable areas within approximately 
300km of known presences, and to all areas, irrespective of suitability further away. For H. marginatum, absence 
points were randomly assigned to unsuitable areas inside the range depicted by Kolonin (2009) [20] and within 
approximately 300km of known presences, and to all areas, irrespective of suitability further away.  

All points were then aggregated to a 10-km grid, to combine any multiple overlapping records. The number of 
presence and absence points was then adjusted by reducing the number of the larger class (in this case absences) 
to that of the less frequent class to produce a final balanced output dataset for spatial modelling. These are shown 
in Figure 1. 
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Figure 1. Points used for modelling of tick vectors 

Left H. marginatum, Right H. lusitanicum. Brown is presence, green is absence 

Human cases of Crimean-Congo haemorrhagic fever 
An occurrence database comprising point (e.g. town or city) or polygon (e.g. county or province) locations of 
confirmed human CCHF infection presence was compiled from peer-reviewed literature, Genbank records, and 
ProMed Mail reports (https://promedmail.org). Searches were completed on 6 July 2022 and a full list of peer-
reviewed citation references for all sources is provided alongside this report. A literature search was conducted on 
PubMed using the terms ‘CCHF’ or ‘Crimean Congo Hemorrhagic Fever’ or ‘Crimean Hemorrhagic Fever’ or ‘Congo 
Hemorrhagic Fever’, as well as their UK English spelling equivalents (spelled ‘haemorrhagic’) to capture all case 
reports which had been published at the time of the search. The same terms were used to search Genbank. An 
occurrence was defined as one or more laboratory confirmed human CCHF infection(s) occurring at a unique 
location (the same administrative area or 1×1km pixel for points) within one calendar year.  

All occurrence data were manually reviewed, and quality controlled to ensure information fidelity and precise geo-
positioning. Reports of autochthonous (locally transmitted) cases or outbreaks were entered as an occurrence 
within the country in which transmission occurred. If imported cases were reported with information about the site 
of infection, they were geo-positioned to the country where transmission occurred. Imported cases were reported 
with no location, they were not entered into the database. In addition, administrative area polygons greater than 
one square degree in area (which is approximately 12 300 km2 at the equator) were removed from the database, 
as their inclusion in niche modelling would introduce a large amount of spatial imprecision. 

Figure 2. Frequency histograms of CCHF human occurrence by year of published report 

Histograms by year of (A) point occurrence locations; (B) administrative area (polygon) occurrence locations 

In total, 1 437 point occurrence records and 854 polygon occurrence records were included in our final dataset 
after performing all quality control procedures (Supplementary Figure 12 for global map). These publications 
spanned the years 1953 through to July 2022. We assumed that any recorded location of presumed autochthonous 
human CCHF occurrence, regardless of the date of the record, represented an environment permissible for the 
transmission of human disease cases. Figure 2 shows histograms for the number of CCHF occurrence locations 
extracted from the literature by year of publication. Occurrence points identified for the original paper and for this 
revision together with generated pseudo-absence locations (described in greater detail below) for Europe are 
shown in Figure 3. 

H. marginatum H. lusitanicum 

B 
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Figure 3. Occurrence and pseudo-absence locations of Crimean-Congo haemorrhagic fever human 
cases (Europe and neighbouring areas) 

 

Global gridded data (1 km×1 km) were taken from the covariate data suite (Supplementary Table 2) for a set of 
four explanatory covariates. The covariates were chosen based on factors known or hypothesised to contribute to 
suitability for CCHFV transmission to humans based upon the national-level studies described in the introduction. 
These included: i) annual mean precipitation interpolated from global meteorological stations, and ii) mean land 
surface temperature derived from NASA’s moderate resolution imaging spectrometer (MODIS) imagery, intended to 
capture the generally warm and arid climate zones where CCHFV is transmitted; iii) 1 km resolution measure of the 
mean annual Enhanced Vegetation Index (EVI, also from MODIS); and iv) the proportion of each 1 km×1 km grid 
cell covered by shrub or grass land cover types derived from the Earthenv consensus land cover datasets. No 
covariate grids were shown to be adversely affected by multicollinearity.  

Having assembled occurrence and covariate datasets, a BRT approach was used to establish a multivariate 
empirical relationship between the probability of CCHF presence and the environmental conditions (as determined 
by the set of covariates described above) sampled at each occurrence location for points, or averaged within each 
polygon-level occurrence, as mentioned above for the vector modelling, BRT models require not only presence data 
but also pseudo-absence data defining areas of potentially unsuitable environmental conditions at unsampled 
locations, since data on absence of human disease are rarely reported.  

Figure 4. Evidence consensus map for human Crimean-Congo haemorrhagic fever presence or 
absence by country 
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An evidence-based probabilistic framework for generating pseudo-absence data were used (Figure 4). To 
represent the environmental conditions in locations where human disease has not been reported, 5 000 
background points were randomly generated and weighted based on a continuous raster surface derived from a 
national (and sometimes sub-national) CCHF evidence consensus score. This score is derived from a series of 
evidence types for presence aggregated and ranked from -100 (consensus on absence) to +100 (consensus on 
presence) as described in Messina et al [1]. More background absence points were assigned to areas with high 
consensus on absence. 

To increase the robustness of model predictions and quantify model uncertainty, BRT models were fitted to fifty 
separate bootstraps of the data. We then evaluated the central tendency as the mean across all 50 BRT models. Each 
of the 50 individual models was fitted using the gbm.step subroutine in the dismo package in the R statistical 
programming environment. All other tuning parameters of the algorithm were retained as in Messina et al [1]. 

Results 
Vector distributions  
Predicted presence (and absence) for each vector species are shown in Figure 5. Three estimates of presence were 
derived from the model replicates  – the mean, minimum and maximum values, each coded as present if the 
calculated probability of presence value exceeds 0.5. This resulted in four distribution categories in each map: 
minimum, mean and maximum predicted vector extent, and absence. All are delimited by the suitability limits 
described in the methods above.  

The vector models generally reflect the training data well, especially for H. lusitanicum where sensitivity and 
specificity of the RF models both average well above 0.9 and the receiver operating characteristic (ROC) values of 
the BRT models exceed 0.95. This is perhaps to be expected as the species range is relatively restricted and less 
environmentally heterogeneous than that of H. marginatum. The H. marginatum models also perform well with 
associated Kappa values of >0.84 for the RF models and ROC values > 0.89 for the BRT models. While these 
models have a high sensitivity (> 0.83), their specificity is a little lower at 0.69–0.72, meaning that the models 
predicted a significant number of false negatives. These are largely to the East of the modelled area and outside 
the project area of interest – and are further discussed below.  

The range of predicted vector distributions is shown by the minimum and maximum predicted extent (Figure 5): 
the maximum predicted extent for H. marginatum extends substantially further north into parts France, central 
Europe and the Caucasus than do the mean predictions. 

Figure 5. Predicted vector distribution maps 

 
The most frequently used predictors in models for H. marginatum are a) the minimum values of the Normalised 
Difference Vegetation Index (NDVI) b) aspects of the day and night-time temperature, c) timing and levels of 
rainfall and d) aspects of minimum relative humidity. For H. lusitanicum, the best predictors relate to a) monthly 
rainfall seasonality and the degree to which it varies over the year; and b) the levels and timing of day and night-
time temperature. The importance of the top ten predictors for each vector and modelling method is given in 
Supplementary Table 3. 
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CCHF distribution in humans 
Figure 6 shows the resulting mean predictions for probability of autochthonous CCHF occurrence (ranging 0–1), 
displayed with minimum, maximum, and mean predicted vector presence (where at least one of the modelled 
probability values for either vector’s presence was greater than or equal to 0.5) used as masks to hide ecologically 
suitable areas from view where the vectors are not predicted to be present, as well as the version without 
masking. Supplementary Figure 13 shows the full global modelled distribution (beyond Europe; unmasked). 
Uncertainty estimates for each pixel were possible from the ensemble approach (by using the interquartile range of 
all 50 predictions), and are shown in Supplementary Figure 14. 

Figure 6. Maps of predicted ecological suitability for autochthonous human CCHF  

 
Top left: masked limiting CCHF occurrence predictions to the maximum vector extent layer; Top right: masked limiting CCHF 
occurrence predictions to the mean vector extent layer; Bottom left: masked limiting CCHF occurrence predictions to the 
minimum vector extent layer; Bottom right: CCHF occurrence predictions without mask   
 
The disease prediction maps without masking suggest that the environmental suitability for the acquisition of 
autochthonous disease extends well into northern Europe and the northern Caucasus – far beyond the distributions 
of the two vector species considered. Limiting the predictions to the area covered by the vector distributions 
implies at best (mask with minimum vector distribution area) that Mediterranean France, Spain, the Balkans, 
Türkiye, and much of the Mediterranean seaboard are all predicted to have patches suitable for the disease.  

Looking at the recorded disease locations (Supplementary Figure 12), which extend well into the Caucasus and 
central Europe, it seems that the CCHF ecological suitability map that used the vector mask with the maximum 
predicted vector distribution extents to hide areas from view where the vector is not present, provides the closest 
match to the known data, with suitability in e.g. Hungary and Ukraine. This level of masking suggests the predicted 
disease range extends significantly further north to about 49oN (in north central France and central Europe). It is 
also evident that the vector masking ‘removes’ predicted disease occurrence from Israel, Palestine, Lebanon, Syria, 
and Iraq. These are areas for which there are no presence records of either vector, and are also not predicted to 
support either vector.  
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Because in these maps, areas where the consensus layer (Fig. 4) suggests less than high consensus about CCHF 
presence are not hidden from view, the maps show France and Italy as having a high probability of CCHF, even 
though there have not been any reports of cases thus far. Still, Figure 6 shows several patches of environmental 
suitability within the predicted vector ranges in these countries. Currently, northern Europe is not predicted to be 
ecologically suitable for autochthonous CCHF acquisition due to a lack of vector presence. 

Supplementary Figure 13 shows the probability of CCHF occurrence for the full modelled extent, without masking 
(i.e. no hiding of areas without vector presence or with low consensus from view). Uncertainty estimates for the 
updated CCHF probability of occurrence maps for each pixel were possible from the ensemble approach (by using 
the interquartile range of all 50 predictions) and are shown in Supplementary Figure 14. 

The proportional influence of covariates towards the probability predictions in the ensemble of models is shown in 
Figure 7, with the total proportion equalling 100 percent. The average Area Under the Curve (AUC) across all 
models was 0.74 (range 0.67–0.79). AUC ranges from 0 to 1 (with an AUC of 0.5 being as good as a random 
prediction), and provides an aggregate measure of performance across all possible classification thresholds. Values 
closer to 1 indicate better model fit. Land surface temperature was by far the greatest contributor to the models, 
followed by precipitation, shrub land cover, and then EVI. 

Figure 7. Proportional influence of covariates on CCHF suitability predictions 

      
The difference between the predictions for 2022 and 2015 (Supplementary Figure 13 and 15) is presented in 
Figure 8, where areas without vector presence according to the maximum predicted vector extent are hidden from 
view – the red areas indicating where the current model predicts substantially higher ecological suitability for CCHF. 
This reflects the additional CCHFV presence records included in the current models in the eastern part of the region 
(Supplementary Figure 12). While much of Europe’s predicted ecological suitability remains the same in this 
updated model, much of the south is predicted to be substantially more suitable: particularly pockets throughout 
Spain, France, Italy, the Balkans, Türkiye, and northern Africa.  
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Figure 8. Difference in probability of CCHF suitability predictions between 2015 and 2022 models 

 

As emphasised above, this difference reflects the addition of new training data for the 2022 model. It should 
perhaps be noted that the two models were run at different spatial resolutions (2015 at 5km and 2022 at 1km), 
and so the differences are not strictly valid at the higher resolution, and the map in Figure 8 should only be used 
for reference on general areas where ecological suitability predictions are different.  

Data availability 
All spatial data inputs and outputs are provided as two ARCGIS 10.8 Packages: 1) 
‘VNEREGOCCHF_Vector_Report_VectorCCHFData_April23.mpk’ containing the input and output Vector and CCHF 
datasets; and 2) VNEREGOCCHF_Vector_Report_CovariateData_April23.mpk. The CCHF data locations are also 
provided in and excel file ‘CCHF Locations.xlsx’. The files can be downloaded here: 
https://drive.google.com/drive/folders/1B9LE3259ZL2NPm3kUkrVaB2e8zmM_hC4. Individual file descriptions are 
given in the package’s Table of Contents, and the associated filenames can be obtained from the Layer Properties 
Source Tab. An endnote library (CCHF_2013_2022.xml) provides the references for all literature searched for CCHF 
occurrences, and a second file (cchf_report_2023_final.xml) provides all references cited in the report. 
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Discussion 
This report provides updated baseline data for monitoring future changes in the distribution of autochthonous 
CCHF and its associated vectors for Europe and its neighbouring areas. The predicted distributions suggest that a 
number of countries that have yet to record CCHF have areas that are environmentally suitable for autochthonous 
disease – most especially those with Mediterranean coastlines (France, Italy, the southern Balkans, western Asia 
and northern Africa). Both the ecological CCHF suitability predictions and the maximum predicted extents of the 
two vector species imply a potential CCHF distribution extending significantly further northward into mainland 
western and central Europe. It is tempting to suggest that this northward shift could be driven by a warming 
climate. It is also worth noting that these maximum predicted extents overlap some of the VectorNet distributions 
assigned as ‘introduced’ (Supplementary Figure 10) because they are thought to be too far beyond the current 
northern distribution limits to represent established populations. It could be that these introduced presence points 
are in fact the first harbingers of future spread and establishment.  

Further cartographic refinements are required in order to help differentiate endemic from epidemic-prone areas, 
particularly in areas where there is less certainty about the presence or absence of CCHFV overall. The CCHF 
occurrence database used in creating the CCHF ecological suitability map has been updated for to mid-2022, and 
can continue to be updated with new information as it becomes available. Other potential improvements are the 
inclusion of other potential CCHFV vector species into the masking process (discussed below) and the addition of 
more data types, such as those related to CCHFV seroprevalence. For the latter, recent research has elucidated 
potentially important CCHFV reservoir species in non-endemic areas (e.g. France, Italy) that should also be 
considered; for example, imported sheep and goats that may be more susceptible to CCHFV infection [33,34]. 
These efforts to improve mapping of current ecological suitability could further facilitate identification of potential 
transmission foci. 

Figure 9. Maps of high predicted Crimean-Congo haemorrhagic fever suitability 

A) Left: areas with predicted probability of disease >= 0.75 limited to the maximum predicted vector extent; B) Right: same as 
left but with recorded occurrence points and not restricted to areas where the vectors are present. 

Already, these maps have been improved from the 2015 Messina et al. [1] versions due to not only the updated 
occurrence database and higher spatial resolution (now 1km x 1km), which includes significant new data from 
Türkiye, Spain and the Caucasus, but also the inclusion of vector suitability instead of Evidence Consensus to mask 
disease predictions. Panel A of Figure 9 shows areas where the CCHF probability of occurrence is high (greater 
than or equal to 0.75) within the maximum predicted presence area of either suitable vector species. As such, 
these figures may be used as a guide for prioritising future virus surveillance efforts in humans and animals. 
Although a similar occurrence dataset was used in the current model and that of Okely et al. (2020) [2], our 
predictions do not have the high ecological suitability in Poland demonstrated in their maps; in contrast, greater 
ecological suitability for CCHFV is seen in southern Russia and Kazakhstan. This is likely to be due to the different 
set of covariates used in each set of models (for example, Okely et al. used a Principal Components Analysis to 
reduce all available bioclimatic variables to a small number of factors, while our models selected those considered 
most important according to the literature, as well as a measure of shrub land cover). The equivalent high 
probability maps for each vector species are presented in Supplementary Figure 16. It can be seen that areas 
bordering the Adriatic and Mediterranean Seas are likely to be particularly important for vector and disease 
surveillance, as well as the majority of the Iberian peninsula and Türkiye.  

A B 
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It is worth noting that the map of CCHF suitability unrestricted by the presence area of vector species (Figure 9, 
Panel B) suggests many areas (e.g. Scotland) to be environmentally suitable for CCHF occurrence that are far 
beyond recorded occurrence locations and the predicted range of the two vector species. This underlines the need 
for delimiting the predictions to within the area where the vectors are present to produce a realistic disease 
prediction but does also suggest that if the vectors spread to these areas, then the disease might as well.  

While the predicted vector and vector-masked disease outputs reflect the known data well for most of the area of 
interest, recorded (and unmasked predicted) disease occurrence in certain parts of Western Asia is probably 
incorrectly hidden from view by the vector distribution mask. The literature reports H. marginatum to be present 
(widespread) in Iran [20,35,36], further south than the distribution range boundary predicted by Kolonin [20], so it 
is likely that the point data available is substantially underrepresented for these regions (Iraq and Iran are not 
inside the region covered by VectorNet) and also perhaps some of the CCHF pseudoabsences were incorrectly 
placed in suitable areas in this region. Otherwise, it may be that the vector (and thus the virus in vectors) is 
present in pockets (perhaps of irrigation) that these spatial suitability models do not ‘detect’. If so, this suggests 
that the unmasked disease models are more reliable in such areas. Also, a number of other Hyalomma species 
including H. impeltatum, H. anatolicum, H. asiaticum , H. excavatum and H. dromedarii have been identified as 
CCHFV vectors in Iran and its neighbours [20,37]. These are not present in Europe (and there are few if any geo-
referenced occurrence records) and were not incorporated into the vector masking – with the main focus being on 
Europe – but could improve the prediction in Western Asia.  

A further potential improvement would be delimiting the maps according to the presence area of host species for 
ticks, such as deer (for H. marginatum) and hares (for H. lusitanicum) and limiting surveillance priority to within 
rural areas and/or those which are nearer to livestock populations.  

Conclusion 
The updated and improved maps presented in this report could serve as a starting point for a wider discussion 
about the potential likelihood of occurrence of CCHF in Europe. Increasing awareness of public health experts and 
the medical profession in geographic areas which we have newly shown to have a high probability of disease 
occurrence may lead to CCHF being considered in the differential diagnosis of people with compatible symptoms 
(such as high fever, muscle pain, dizziness, abnormal sensitivity to light, abdominal pain, and vomiting) and a 
recent history of tick bite.  

Future serological studies focussed in areas identified as high-risk in this report could also lead to additional 
occurrence records that would in turn improve models that incorporate serological data. As evidenced by reports of 
the disease occurring in Spain in 2016 (before which a 2015 publication did not identify this as a suitable CCHFV 
transmission area), it is important for the mapping of high-suitability areas to be updated regularly, taking into 
consideration advancements in understanding of the disease distribution, as well as new covariate data sources. 
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Annex 
 
Supplementary Table 1. Vector habitat suitability conditions 
Variable H. marginatum H. lusitanicum Dataset 
Forest/woodland > 40% No Yes Corine/ESA CCI 
Woodland or Forest 15 - 40% Yes Yes Corine/ESA CCI 
Shrubland/Grassland Yes Yes Corine/ESA CCI 

Cropland  Yes Yes Corine/ESA CCI 
Sparse Vegetation Yes No Corine/ESA CCI 
Minimum Elevation  < 2000m < 2000m GMTED (see URL below) 
Max temp < 35 oC < 40 oC Worldclim (see URL below) 

Summer minimum Relative Humidity  >10%, < 65% Derived from MODIS LST (see 
URL below) 

Cumulative temperature above 15oC, April to 
August 

>800, plus 50km 
buffer   Worldclim (see URL below) 

Cumulative minimum temperature above 0 oC, 
October and November   >400 Worldclim (see URL below) 

Mean Annual Vapour Pressure Deficit < 15%  ECWMF (see URL below) 

Corine Land Cover 2018: https://land.copernicus.eu/pan-european/corine-land-cover  
ESA CCI Land Cover: http://maps.elie.ucl.ac.be/CCI/viewer/download.php 
GMTED: https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php 
Modis Land Surface Temperature: https://modis.gsfc.nasa.gov/data/dataprod/mod11.php   
Worldclim: https://www.worldclim.org/data/index.html 
ECMWF: https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5  
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Supplementary Table 2. Covariates offered to modelling procedures 

1 VCC1103A0: Middle infra-red mean 
2 VCC1103A1: Middle infra-red amplitude 1 
3 VCC1103A2: Middle infra-red amplitude 2 
4 VCC1103A3: Middle infra-red amplitude 3 
5 VCC1103MN: Middle infra-red minimum 
6 VCC1103MX: Middle infra-red maximum 
7 VCC1103P1: Middle infra-red phase 1 
8 VCC1103P2: Middle infra-red phase 2 
9 VCC1103P3: Middle infra-red phase 3 
10 VCC1103VR: Middle infra-red variance 
11 VCC1107A0: Daytime LST mean 
12 VCC1107A1: Daytime LST amplitude 1 
13 VCC1107A2: Daytime LST amplitude 2 
14 VCC1107A3: Daytime LST amplitude 3 
15 VCC1107MN: Daytime LST minimum 
16 VCC1107MX: Daytime LST maximum 
17 VCC1107P1: Daytime LST phase 1 
18 VCC1107P2: Daytime LST phase 2 
19 VCC1107P3: Daytime LST phase 3 
20 VCC1107VR: Daytime LST variance 
21 VCC1108A0: Nighttime LST mean 
22 VCC1108A1: Nighttime LST amplitude 1 
23 VCC1108A2: Nighttime LST amplitude 2 
24 VCC1108A3: Nighttime LST amplitude 3 
25 VCC1108MN: Nighttime LST minimum 
26 VCC1108MX: Nighttime LST maximum 
27 VCC1108P1: Nighttime LST phase 1 
28 VCC1108P2: Nighttime LST phase 2 
29 VCC1108P3: Nighttime LST phase 3 
30 VCC1108VR: Nighttime LST variance 
31 VCC1114A0: NDVI mean 
32 VCC1114A1: NDVI amplitude 1 
33 VCC1114A2: NDVI amplitude 2 
34 VCC1114A3: NDVI amplitude 3 
35 VCC1114MN: NDVI minimum 
36 VCC1114MX: NDVI maximum 
37 VCC1114P1: NDVI phase 1 
38 VCC1114P2: NDVI phase 2 
39 VCC1114P3: NDVI phase 3 
40 VCC1114VR: NDVI variance  
41 VCC1115A0: EVI mean 
42 VCC1115A1: EVI amplitude 1 
43 VCC1115A2: EVI amplitude 2 
44 VCC1115A3: EVI amplitude 3 
 

45 VCC1115MN: EVI minimum 
46 VCC1115MX: EVI maximum 
47 VCC1115P1: EVI phase 1 
48 VCC1115P2: EVI phase 2 
49 VCC1115P3: EVI phase 3 
50 VCC1115VR: EVI variance  
51 VCMI30GRDP1K DEM (Elevation) +1000 
52 VC1920A0: ERA5 Precipitation mean 
53 VC1920A1: ERA5 Precipitation amplitude 1 
54 VC1920A2: ERA5 Precipitation amplitude 2 
55 VC1920A3: ERA5 Precipitation amplitude 3 
56 VC1920MN: ERA5 Precipitation minimum 
57 VC1920MX: ERA5 Precipitation maximum 
58 VC1920P1: ERA5 Precipitation phase 1 
59 VC1920P2: ERA5 Precipitation phase 2 
60 VC1920P3: ERA5 Precipitation phase 3 
61 VC1920VR: ERA5 Precipitation variance 
62 VCWPOPPPP: Worldpop Human Population density 2020 
63 VCV59EL500: GNTED Elevation + 500 
64 VCEELCBARE: consensus % bare ground 
65 VCEELCDCBD3: consensus % deciduous broadleaved forest 
66 VCEELCEVGBD2: consensus % evergreen broadleaved forest 
67 VCEELCEVGND1: consensus % evergreen needleleaved forest 
68 VCEELCFLOOD8: consensus % flooded 
69 VCEELCHVCB: consensus % herbaceous cover 
70 VCEELCMANAG7: consensus % managed land 
71 VCEELCOTHTR4: consensus % other land cover 
72 VCEELCSHRUB5: consensus % shrub cover 
73 VCEELCURB9: consensus % urban 
74 VCEELCWATER12: consensus % water 
75 VC82094A0: Relative Humidity mean 
76 VC82094A1: Relative Humidity amplitude 1 
77 VC82094A2: Relative Humidity amplitude 2 
78 VC82094A3: Relative Humidity amplitude 3 
79 VC82094MN: Relative Humidity minimum 
80 VC82094MX: Relative Humidity maximum 
81 VC82094P1: Relative Humidity phase 1 
82 VC82094P2: Relative Humidity phase 2 
83 VC82094P3: Relative Humidity phase 3 
84VC82094VR: Relative Humidity variance 
 
 

LST: Land Surface Temperature; NDVI: Normalised Difference vegetation Index; EVI: Enhanced Vegetation Index; DEM: Digital 
Elevation Model. All files starting with VCC11, VC19 and VC82 are Fourier processed MODIS Satellite Imagery produced by the 
Environmental Research Group Oxford according to the methods set out in Scharlemann et. al. (2008) [24]. 
The Relative Humidity layers were produced as described in n Kraemer et. al. (2019) [38] and then Fourier Processed as 
described above.  
The Elevation layer was extracted from the GMTED datasets 
(https://topotools.cr.usgs.gov/gmted_viewer/gmted2010_global_grids.php) and the negative values removed by adding 1 000.  
Population layers derived from layers produced by worldpop (https://www.worldpop.org/datacatalog) 
All Files with VCEELC in file name were derived from the Earthenv consensus land cover data product 
(https://www.earthenv.org/landcover)  
All layers extracted and standardised by ERGO for MOOD Horizon 2020 project N° 874850 (https://mood-h202.eu) 
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Supplementary Figure 10. VectorNet data locations 

Top: H. marginatum; bottom: H. lusitanicum  
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Supplementary Figure 11. Habitat suitability for each vector  

Top: H. marginatum; bottom: H. lusitanicum. Green: unsuitable; white: suitable. 
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Supplementary Figure 12. Full extent of Crimean-Congo haemorrhagic fever pseudo-absence and 
occurrence locations 

 

Supplementary Table 3. Top 10 vector model predictors 

  H. lusitanicum     H. marginatum   

RF   BRT   RF   BRT   

Predictor Metric* Predictor Metric   Predictor Metric Predictor Metric 

Rainfall Amplitude 
Component 1 20.44 Rainfall Amplitude 

Component 1 2.57 NDVI Minimum 9.84 Day Temperature 
Mean 1.66 

Day Temperature 
Phase Component 2 17.2 Rainfall Amplitude 

Component 2 2.45 Rainfall Amplitude 
Component 2 9.8 NDVI Minimum 1.62 

Rainfall Minimum 11.68 Day Temperature 
Phase Component 2 2.17 Day Temperature 

Mean 7.3 Rainfall Amplitude 
Component 2 1.55 

Night Temperature 
Amplitude 
Component 1 

7.1 Infra Red Amplitude 
Component 1 1.92 Rainfall Phase 

Component 3 4.36 Rainfall Amplitude 
Component 1 1.46 

Night Temperature 
Minimum 4.12 EVI Phase 

Component 1 1.62 Rainfall Phase 
Component 1 4.34 Night Temperature 

Phase Component 2 1.41 

Rainfall Amplitude 
Component 2 3.8 Infra Red Phase 

Component 1 1.52 Bare Ground 
Proportion 3.48 Night Temperature 

Maximum 1.35 

Rainfall Phase 
Component 2 2.91 

Night Temperature 
Amplitude 

Component 1 
1.52 Night Temperature 

Phase Component 2 2.95 Rainfall Maximum 1.29 

Infra Red Phase 
Component 1 2.59 Day Temperature 

Mean 1.4 Relative Humidity 
minimum 2.85 Day Temperature 

Phase Component 1 1.29 

Night Temperature 
Mean 2.12 NDVI Phase 

Component 1 1.3 Relative Humidity 
Phase Component 3 2.8 NDVI Amplitude 

Component 2 1.26 

Relative Humidity 
Amplitude 
Component 2 

1.91 Infra Red Phase 
Component 2 1.28 Rainfall Phase 

Component 2 2.77 Day Temperature 
Maximum 1.25 

*For both RF and BRT the higher the value of the metric within each method the more important the predictor. The metrics are 
different for each method, and should not be compared. 
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Supplementary Figure 13. Full extent of modelled Crimean-Congo haemorrhagic fever suitability map  

 

Supplementary Figure 14. Uncertainty estimates for Crimean-Congo haemorrhagic fever suitability 
estimates (probability of occurrence) 

 

Uncertainty ranges from 0 to 1, with higher values indicating greater ranges in the estimated probability of occurrence. 
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Supplementary Figure 15. Unmasked 2015 Crimean-Congo haemorrhagic fever prediction from 
Messina et al (2015) 
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Supplementary Figure 16. Areas with > 0.75 probability of vector presence 
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